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ABSTRACT 

The optimal defense and operation of networks against worst-case attack is an 

important problem for military analysts. We review development of existing solutions for 

the Defender-Attacker-Defender (DAD) tri-level optimization model and investigate new 

applications and solution procedures. We develop an implicit enumeration algorithm that 

incorporates addition of new defenses as an alternative solution method for the DAD 

model. Our testing demonstrates that implicit enumeration can efficiently generate all 

equivalent optimal or near-optimal solutions for DAD problems. When budgets for 

network defense or attack are uncertain, decision makers usually prioritize defenses in 

nested lists. We quantify the costs of various strategies for nesting of defenses. We design 

a parametric programming formulation of the DAD model to find nested defenses that 

have the smallest cost difference from optimal non-nested solutions. We create new 

solution procedures for the DAD constrained shortest path problem. We merge the 

attacker model with Lagrangian relaxation of the operator model into a single formulation 

that can obtain fast heuristic solutions. We combine our heuristic algorithm with 

traditional methods to obtain provably optimal or near-optimal solutions. We test our 

algorithms on medium and large networks, and our results show that our innovations can 

significantly outperform traditional nested decomposition. 
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EXECUTIVE SUMMARY 

The defender-attacker-defender (DAD) problem is a tri-level optimization model 

of the defense and operation of a system against a worst-case enemy attack. We model the 

DAD problem as a sequential game. First, the defender prepares for an attack by either 

hardening portions of a system or, in some cases, designing new additions to a system. 

Second, an attacker seeks to degrade system performance despite the defensive 

preparations. Finally, the defender of the system makes the best possible decisions to 

operate the resulting system. The solution to a DAD problem is a defense of the system to 

make it more resilient to a worst-case attack. Expression 1 is a simplified representation of 

DAD tri-level optimization model with decision variables for defense (W), attack (X) and 

operation (Y) of a system. We describe the historical development of the DAD model and 

our research develops three concepts for the DAD model. 

 

( )
min max min ( , , )
W Y WX

f W X Y
    (1) 

 

We advance an alternative solution algorithm for the DAD model with implicit 

enumeration (IE). IE of the DAD model works by restricting and subsequently relaxing 

the defense budget of the original problem instance. IE reduces the tri-level DAD problem 

into a progression of simpler bi-level subproblems arranged in a tree structure. We expand 

enumeration theory by including the ability to design new additions to a network as 

defenses against attack. We note that IE is an alternative algorithm to obtain solutions to 

DAD problem instances because it does not use nested decomposition. 

We determine that IE is usually slower than traditional nested decomposition to 

find an optimal solution to a DAD model. However, in problem instances where multiple 

equivalent optimal solutions exist, IE can find all of the equivalent solutions concurrently. 

Nested decomposition does not have such a capability. Furthermore, in situations where 

all solutions within a specific percentage of optimality are required, IE can generate all 

possible solutions simultaneously. We can conclude that IE is an efficient way to generate 

many equivalent solutions to a DAD minimum cost flow problem instance. 



 xx

We investigate the implications of producing a prioritized list of defenses for a 

system when the defense or attack budget is unknown. We use the term nested defenses to 

refer to a monotonic sequence of sets, where each set of defenses for a particular budget 

scenario contains the defenses for the next smaller budget scenario. We examine how 

nested defenses differ from the optimal set of defenses for any particular defense and 

attack budget scenario for the DAD minimum cost flow problem. In particular, we 

quantify the cost of requiring a set of defenses to be monotonic. We examine various 

heuristic nesting strategies and compare their performance against known optimal 

solutions. We adapt the use of vector and matrix norms as well as various decision theory 

tools to measure how a set of nested defenses differs from the set of optimal defenses. We 

define the best nested defense to be the set of defenses that is closest to the optimal set of 

non-nested defenses in terms of a vector norm measurement over the set of unknown 

budget scenarios. We demonstrate how heuristic approaches may not produce the best set 

of nested defenses. 

In order to find the best nested defense, we develop a parametric programming 

formulation of the DAD model that allows for unknown defense or attack budgets. This 

formulation minimizes the overall system cost by considering all unknown budget 

scenarios simultaneously. Our formulation fits within the framework of stochastic 

programming. We can conclude that our parametric programming formulation can 

generate the set of nested defenses that is as close as possible to the set of optimal 

solutions over all possible budget scenarios. 

We develop a DAD model for the constrained shortest path (CSP) problem. We do 

not allow for new additions as defenses in this model. To the best of our knowledge, 

solution procedures for DAD CSP do not exist in the literature. The CSP problem is 

arduous because the additional side constraint breaks the network structure of the problem. 

Loss of network structure results in a much more difficult binary linear program to solve. 

We adapt nested decomposition techniques to solve DAD CSP instances on test networks. 

We find that the nested decomposition algorithm by itself for DAD CSP problem 

instances becomes either intractable or excessively time intensive to solve as defense and 

attack budgets increase. 



 xxi

We improve the ability to solve a DAD CSP instance by developing a Lagrangian 

relaxation heuristic. We expand known Lagrangian relaxation techniques to include 

defense and attack of the CSP problem. We develop two different alternative algorithms 

for Lagrangian relaxation of DAD CSP. One algorithm uses path enumeration techniques 

to close the gap between the bounds that are created by Lagrangian relaxation. The second 

algorithm takes advantage of the similar maximization goals of Lagrangian relaxation and 

the attacker model. We merge the attacker model and the Lagrangian relaxation operator 

model into a single model. Both algorithms find a fast heuristic solution to DAD CSP. 

We combine our heuristics with nested decomposition in order to reduce the time 

required to solve a DAD CSP instance optimally. Our heuristic algorithms cannot be 

guaranteed to give an optimal solution, but they can provide information to accelerate 

nested decomposition. We use output from our heuristic algorithms as starting values for 

nested decomposition. Our combined algorithms are significantly faster than regular 

nested decomposition to find an optimal or near optimal solution to a DAD CSP instance. 

We compare results for our combined algorithms against regular nested 

decomposition for DAD CSP on a randomly generated 50 node grid network as well as a 

large road network of the Washington, DC, area. Except for a few test cases, our 

combined algorithm is able to find the known optimal solution much faster than regular 

nested decomposition on the grid network. In some instances, we observe that our 

combined algorithm can be more than four times faster than regular nested decomposition 

in finding the optimal solution on the grid network. The road network shows that our 

DAD CSP algorithms can only scale to large problem sizes with approximately optimal 

solutions. In order to obtain a solution to a DAD CSP instance on the road network in less 

than 24 hours, we allow for solutions that are proven to be within 10% of optimality. Our 

combined algorithm is able to find an approximately optimal solution faster than regular 

nested decomposition in 19 of 25 budget scenarios on the real-world road network. In the 

best case, our combined algorithm can be 66 times faster than regular nested 

decomposition for DAD CSP on the road network. We conclude that our combined 

algorithms represent a significant improvement in the ability to solve DAD CSP instances. 
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I. DEFENDER-ATTACKER-DEFENDER MODEL 

A. PROBLEM DEFINITION 

This dissertation investigates applications and solutions of defender-attacker-

defender (DAD) tri-level models to a variety of system optimization problems. Our goals 

are to expand existing knowledge about the problem structure and improve solution 

procedures for it. Alderson, Brown, Carlyle, and Wood (2011) define a DAD system 

optimization problem as a tri-level optimization model that models the optimal defense 

and operation of a friendly system against a worst-case enemy attack We model a DAD 

problem as a sequential game in which the decisions are made in a predetermined 

sequence: the defender, then the attacker and finally the defender (or operator) (Brown et 

al., 2005). First, the defender of a system optimally prepares for a worst-case enemy 

attack by designing new additions to, or redesigning some parts of, a network or 

infrastructure system. Second, an enemy attacker seeks to optimally degrade the overall 

performance of the system despite all defensive preparations that have been made. 

Finally, the defender (or operator) of the system makes the best possible decisions to 

operate the resulting system optimally. The system defender and operator could be 

synonymous or they could be different entities with similar interests. The solution to a 

DAD problem is a defense or redesign of the system to make it more resilient to a set of 

possible attacks by explicitly considering the system’s response to each attack. Alderson, 

Brown and Carlyle (2014) define the “operational resilience” of a system is dependent 

upon its set of responses and the corresponding total costs to defenses and attacks. 

The DAD model can be formulated for any operator model, to include linear, non-

linear, integer and binary programs. A common application for the DAD model is a 

network flow problem. As an example, we formally define the tri-level DAD 

optimization model in the context of a minimum cost network flow problem. We define a 

network G = (N,A) with supplies of resources at source nodes, demands for resources at 

destination nodes, and arcs with per unit transportation costs (cij) and maximum flow 

capacities (uij). The classical minimum cost flow problem moves all resources from 

sources to destinations at the lowest cost. The amount of resources that flow on arcs is 
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governed by non-negative integer variables (Y). This is the simplest version of the 

operator problem (1.1a). If an attacker can add a penalty (qij) to some arcs so that the 

adjusted cost of an attacked arc (X) becomes cij + qij, we obtain the attacker problem 

(1.1b). If we allow a defender the ability to protect a number of arcs from an attack (W), 

we obtain the defender problem (1.1c). Expressions (1.1a)-(1.1c) all have blocks of 

constraints that govern the employment of defenses (Ψ), attacks (Ξ) and operation of 

flows subject to a particular defense (ϒ(W)). These blocks of constraints are detailed in 

later sections of this chapter.  

 
min ( )
Y

f Y
   (1.1a) 

 
max min ( , )

YX
f X Y

   (1.1b) 
 

( )
min max min ( , , )
W Y WX

f W X Y
    (1.1c) 

 

Expression (1.1c) is a DAD model for minimum cost flow and it may be solved 

with a nested decomposition algorithm. Israeli uses the term nested decomposition to 

decompose a tri-level optimization problem to simpler single and bi-level sub problems. 

(1999). The key insight of nested decomposition is that the inner stage of decomposition 

functions as a sub-problem for an outer stage of decomposition. If we employ 

decomposition to solve (1.1c), and use the defenses (W) as the outer decomposition 

master problem variables, the resulting sub problem is a two-stage model along the lines 

of (1.1b), which itself can be solved using decomposition. In a nested decomposition 

approach, the values of some variables are held constant while the remaining variables 

are optimized. We define the hat symbol (^) to denote the holding of a decision variable 

to a fixed value during various stages of decomposition. 

B. HISTORICAL BACKGROUND 

The composition of the DAD problem involves three levels of optimization, and 

can best be described by considering each part of the tri-level optimization sequentially 

(Alderson et al., 2014). The innermost level of optimization only involves the operation 
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of the system as originally designed, under fixed values of defenses (W) and attacks (X). 

The optimal operation of a system is referred to as the operator model presented as (1.2a). 

This model could be a network flow problem, but DAD models can include any model of 

an infrastructure system as the innermost model. Existing operations research and 

engineering literature abounds with operator models of various infrastructure systems. 

Ford and Fulkerson (1962) originally considered operator models in the context of 

maximizing the amount of goods moved from a source to a receiver. 

 

ˆ( )

ˆ ˆmin ( , , )
Y w

f W X Y
   (1.2a) 

 

The second level of optimization in a DAD model involves the attacker, who 

wants to optimally choose the best set of attacks, under a fixed value of defenses (W). 

The goal of the attacker is to maximize the disruption to the operator of the system. 

Wollmer (1964) considered removing edges in a network in order to disrupt and reduce 

the amount of flow. The attacker model is shown in (1.2b) and is also referred to as the 

attacker-defender (AD) problem. 

 

ˆ( )

ˆmax min ( , , )
Y wX

f W X Y
   (1.2b) 

 

The problem of optimal attack and subsequent operation of a system is usually 

formulated as a bi-level optimization problem. The first known application of this 

problem comes from declassified research of Harris and Ross (1955). The authors studied 

the least costly methods to block the flows of a railway network moving war supplies 

from the Soviet Union into Europe with a finite number of attacks. Some other examples 

of the kinds of infrastructure systems that can be studied with DAD problem modeling 

include, but are not limited to, a road and highway network with a flow of traffic 

(Leblanc, 1975) or an energy distribution system with flows of gas or electricity (Brown 

et al., 2005). 

McMasters and Mustin (1970) devised one of the first algorithms to solve (1.2b) 

for the optimal attack or interdiction of a supply network. When applied to network flow 
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problems, the attacker model of (1.2b) is also historically referred to as the network 

interdiction problem (Golden, 1978). There are at least three predominant methods for 

solving an AD problem. The decomposition method of Benders’ (1962) examines one set 

of variables in a sub-problem and the other set of variables in a master problem. 

Fulkerson and Harding (1977) showed how to apply duality theory to transform the 

attacker model into a single level of optimization. A third solution method is implicit 

enumeration (IE) of all attack strategies (Scaparra & Church, 2008). We utilize all of 

these approaches in our research. 

The network interdiction problem is a computationally difficult problem. The 

computational complexity of (1.2b) has been proven to be in the class of NP-Hard 

problems (Hansen, Jaumard and Savard, 1992). Wood (1993) showed that the network 

interdiction problem is NP-Complete. 

The problem of optimal allocation of defense resources against an attacker in a bi-

level defender-attacker (DA) optimization model has been in existence since the 1960s. 

Pugh (1964) considered the optimal deployment of Intercontinental Ballistic Missile 

(ICBM) defenses against an adversary designing a nuclear attack. Pugh’s (1964) 

fundamental insights of the goals of the defender and the attacker are still relevant today: 

It usually must be assumed that a prospective attacker will utilize 
knowledge of the defense deployment in designing an attack. Hence the 
defense problem is not to minimize damage resulting from a specific 
attack, but to choose that allocation of defense resources that will give best 
protection when an attack is optimized against whatever defenses are 
chosen. (p. 543) 

The shortcoming of the bi-level DA model for applications that we consider is 

that it only models actions of the defender (W) and the attacker (X). The subsequent 

reaction of the operator of the system (Y) after the defenses and attacks are not explicitly 

optimized in the bi-level DA model. The DA model is shown in (1.2c). 

 
min max ( , )
W X

f W X
    (1.2c) 
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The order of the max and min operators in the problem formulation determines 

the structure of the problem, since the entity that wishes to maximize damage to the 

system is separate and distinct from the entity that wants to operate and/or defend the 

system. Danskin (1967) showed the placement of the operators in the bi-level 

optimization problem formulation is essential, since a max-min problem is not 

equivalent, in general, to a min-max problem. The standard result is in Equation (1.2d). 

 

ˆ ˆ( ) ( )

ˆ ˆmax min ( , , ) min max ( , , ).
Y w Y wX X

f W X Y f W X Y
  

  (1.2d) 

 

An AD model is a sequential two-person zero-sum game (Washburn & Wood, 

1995). In the worst case, an attacking enemy will have perfect knowledge of all defenses 

prior to commencing an attack. Implicit in this assumption is the game theoretic notion of 

perfect information, that both the attacker and the defender know all of the relevant 

information about the capabilities of themselves and their adversary (Owen, 1995). It is 

also assumed that both the attacker and defender are rational and will select the best 

strategies to optimize their objectives (Owen, 1995). It is possible that attackers may not 

always behave rationally and choose the optimal worst-case attack (Smith et al., 2007). 

However, the assumption of rationality is always conservative in the zero-sum case. 

Early attempts at solving the DAD problem focused on reducing the tri-level 

model to a bi-level model. Wood (1993) showed the dual of the inner operator problem 

can be exploited when modeled with continuous variables. The linear programming dual 

of the inner operator problem is a maximization that coincides with the maximization of 

the attacker model. Thus, the tri-level DAD problem can be transformed to a bi-level 

problem. The DAD problem becomes a DA model in (1.2e) with operator model dual 

variables for nodes (π) and arcs (α). 

 

X, ,
min max ( , , , )
W

f W X
 

 
    (1.2e) 

 

Expression (1.2e) is a challenging bi-level mixed integer program, since both the 

minimization variables (W) and the maximization variables (X) are discrete. Morton, Pan 
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and Saeger highlight the difficulty of (1.2e) by stating, “The problem is formulated with a 

nested ‘min-max’ structure, which is not amenable to solution through standard 

optimization algorithms” (2007, p. 6). A shortcoming of reducing the DAD problem to a 

bi-level model is that such a transformation is only possible when the inner operator 

model of (1.2a) has all continuous variables. If the operator model does not contain 

continuous variables, then the bi-level reduction of the DAD problem of (1.2e) cannot be 

performed. Chapters II and III will take advantage of the simplification of the DAD 

model in (1.2e). We also consider a DAD model where the reformulation in (1.2e) cannot 

be performed in Chapter IV. 

Tri-level optimization for the defense, interdiction and operation of systems have 

appeared in research as early as Israeli (1999). Israeli and Wood briefly mention the 

“system defense problem” of hardening systems against attack where “the network user 

interdicts the interdictor” with a nested decomposition scheme, but further details are not 

provided (2002, p. 111). As recently as ten years ago, real-world instances of tri-level 

DAD models were considered extremely difficult to solve (Brown, Carlyle, Salmeron and 

Wood, 2005). Scaparra and Church declared, “To the best of the authors’ knowledge, no 

efficient algorithms have been proposed to deal with three stage [defender-attacker-

defender] problems” (2008, p. 1906). However, advances in computing power and 

modeling techniques allow larger tri-level DAD problems to be solved in a reasonable 

amount of time. The tri-level model incorporates everything from the bi-level model, 

along with the addition of a distinct action for the defender of the system in anticipation 

of an attack. The defender chooses a defense option subject to a set of constraints that 

either expand the system by constructing additional new edges or harden the system by 

reducing the impact of an enemy attack against an edge. The defender model of (1.1c) is 

restated as (1.2f), and is also known as the DAD problem (Alderson et al., 2011). 

 

( )
min max min ( , , )
W Y wX

f W X Y
    (1.2f) 

 

Israeli observed that (1.2f) is “NP-Hard and not known to be in NP” (1999, p. 61). 

Expression (1.2f) incorporates the network interdiction problem of (1.2b) as a special 
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case when there are zero defenses. Evaluation of any feasible defense requires the 

solution of an NP-Hard interdiction problem to compute an objective function value. 

Algorithms to find optimal solutions to the defender model of (1.2f) as a tri-level 

optimization model were conjectured by Israeli (1999), but not implemented. Successful 

implementations of tri-level DAD algorithms are a recent development (Alderson et al., 

2011 & 2014). Instances of an original Soviet Union railway problem from Harris and 

Ross (1955) have been solved using tri-level optimization by Alderson, Brown, Carlyle 

and Cox (2013). Tri-level optimization has also been applied to a fuel distribution 

network (Alderson et al., 2015). We use the fuel distribution network from these authors 

paper to test and validate some of our research results in Chapters I–III. 

C. DAD NESTED DECOMPOSITION ALGORITHMS 

As a starting point, we implement decomposition algorithms based on Alderson et 

al. (2011 & 2014) of a particular tri-level DAD problem instance using the General 

Algebraic Modeling Software (GAMS) version 24.5 with the IBM CPLEX solver. The 

DAD decomposition algorithms we implemented are similar to those employed by 

Benders (1962) with one key difference. Benders (1962) decomposition uses continuous 

variables in the sub problem and discrete variables in the master problem. Our 

decomposition procedure features binary defense variables (W), binary attack variables 

(X) and integer flow variables (Y). The differences in variable types require 

modifications to traditional decomposition techniques. We present the formulation of a 

DAD minimum cost flow problem and our implementation of decomposition in this 

section as an example of DAD nested decomposition. The nested decomposition 

algorithms discussed here follow the structure of Alderson et al. (2011 & 2014). 

1. DAD Minimum Cost Flow Model Formulation 

Alderson et al. (2014 & 2015) present a DAD model for defending, attacking and 

operating a minimum cost network flow model. We formulate the DAD minimum cost 

flow problem in order to explain the inner workings of nested decomposition. We use this 

notation as a common lexicon in Chapters I–III. Chapter IV has minor changes to this 

notation, as a different DAD problem is considered. 
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Sets: 

n N    Nodes of the network (Note: i and j are used as aliases for n). 

 ,i j E   Undirected edges of the network. 

 ,i j A   Directed arcs of the network. 

d D    Defense options available for undirected edges (i, j). 
(Note: d0 represents option of no defenses.) 

k K    Iterations of inner decomposition. 
' 'k K   Iterations of outer decomposition. 

 

Data: 

ijdc    Cost to move one unit of flow on arc (i, j) under defense plan d. 

ijdu    Maximum capacity of undirected edge (i, j) under defense plan d. 

ijdq    Per unit penalty cost to use attacked arc (i, j) with defense plan d. 

np    Per unit penalty cost for not satisfying demand at node n. 

ijr    Cost to attack undirected edge (i, j). 

ijdh    Cost to protect or build undirected edge (i, j) under defense plan d. 

ndemand   Resources at node n. (positive is supply, negative is demand) 

_attack budget  Maximum number attacks the attacker can afford. 
_defense budget  Maximum number of defenses the defender can afford. 

 

Decision Variables (units): 

nS   Amount of unfulfilled demand (shortage) at node n. (Units: items, etc.) 

'nkS   Unfulfilled demand at node n during outer decomposition iteration k’. 

ijdW   Binary; 1 if edge (i, j) chooses defense option d, 0 otherwise. (Unit less) 

ijX   Binary; 1 if edge (i, j) is attacked, 0 otherwise. (Unit less) 

ijdY   Amount of flow on arc (i, j) with defense d. (units: barrels, items, etc.) 

'ijdkY   Flow on arc (i, j) with defense d during outer decomposition iteration k’. 

n   Dual variable associated with each network node n. 

ijd   Dual variable associated with each network arc (i, j) under defense plan d. 

ADZ   Objective function value of inner decomposition 

DADZ   Outer decomposition objective function value 

 

Additional Notation: 

ˆ
ijdW   Fixed value 1 if arc (i, j) has defense option d assigned; 0 otherwise. 
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ˆ
ijX   Fixed value 1 if edge (i, j) is assigned to be attacked; 0 otherwise. 

'
ˆ

ijkX   Fixed value 1 if edge (i, j) is attacked in outer iteration k’; 0 otherwise. 

îjdkY   Fixed amount of flow assigned to arc (i, j) with defense d in iteration k. 

ˆ
nkS   Fixed amount of unfulfilled demand assigned to node n in iteration k. 

 

Formulation: 

     
,

( , )

min max min ,
ijd n ijdij

ijd ijd ij ijd jid jid ij jid n nW S YX
d D i j E n N

c q X Y c q X Y S p
  

            (1.3a) 

Subject To: 

( , ) ( , )

    ,njd ind n n
d D n j A d D i n A

Y Y S demand n N
   

         (1.3b) 

                                       ( , ) , ,ijd jid ijd ijdY Y u W i j E d D       (1.3c) 

( , )

_ ,ij ij
i j E

r X attack budget


    (1.3d) 

0

: ( , )

_ ,ijd ijd
d D i j E
d d

h W defense budget
 


     (1.3e) 

1                                                      ( , ) ,ijd
d D

W i j E


    (1.3f) 

0                                                             ( , ) , ,ijdY i j A d D     (1.3g) 

0                                                              ,nS n N    (1.3h) 

{0,1}                                                       ( , ) ,ijX i j E    (1.3i) 

{0,1}                                                      ( , ) , .ijdW i j E d D     (1.3j) 

 

The objective function (1.3a) expresses the three levels of optimization. The 

innermost minimization operator seeks to minimize the cost of flows (Y) and shortages 

(S) on the network after defenses and attacks are fixed. The middle maximization 

operator has the objective of maximizing the cost of the resulting optimal flow, by 

attacking arcs for a given defense plan. The outer minimization operator chooses the 

optimal defense (W) to minimize the worst-case cost over all attacks. Equation (1.3b) 

represent balance of flow equations for each node in the network, with an elastic variable 

compensating for unfulfilled demand. Equations (1.3c) are bi-directional (i.e., shared) 

capacity constraints for each edge in the network, forcing total flow on an edge to be less 

than the maximum capacity (u) for the edge under a particular defense option (d). 

Equation (1.3d) is a budget constraint on the attacker to ensure that the attacker can only 
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attack as many edges as he or she can afford. Equation (1.3e) is a budget constraint on the 

defender which ensures the amount of network expansion or hardening stays within a 

budget. Equation (1.3f) ensures each edge of the network can only have one defense 

option chosen. Equations (1.3g) – (1.3j) enforce variable types. 

At a minimum, we have two possible defense choices for each arc. Defense 

choices in our application either leave an arc undefended (d0) or choose to defend an arc 

(d1). Our development of DAD CSP is based on two defense choices. However, our 

formulation can support more than two defense choices. 

We can now define the constraint sets from the previous section in the context of 

the DAD minimum cost flow problem. The operator model constraint set (ϒ (W)) 

consists of Equations (1.3b), (1.3c), (1.3g), and (1.3h). The attacker model constraint set 

(Ξ) consists of Equations (1.3d) and (1.3i). The defender model constraint set (Ψ) 

consists of Equations (1.3e), (1.3f), and (1.3j). Although Equation (1.3c) contains defense 

variables (W), we consider it to define the feasible region of the path variables (Y), and 

not to place any restrictions on the defense variables (W) themselves. Since the defender 

chooses the defense variables (W) before the path variables (Y) are determined, the 

operator model is feasible for any feasible values of the defense variables (W) in the 

defender model. 

2. AD Inner Decomposition 

The structure of the inner decomposition is a bi-level maxi-min AD optimization 

problem. The inner decomposition fixes the values of the defense variables (W), resulting 

in an AD inner decomposition problem in the form of (1.2b). 

AD Inner Decomposition Problem Formulation: 

  ,
( , )

max min ,
n ijdij

ijd ijd ij ji ijd n ni j i jS YX
d D i j A n N

c q X X Y S p
 

  

       
     (1.4a) 

Subject to: 

( , ) (i, )

    ,njd ind n n
d D n j A d D n A

Y Y S demand n N
   

         (1.4b) 

ˆ                                       ( , ) , ,ijd jid ijd ijdY Y u W i j E d D       (1.4c) 
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( , )

_ ,ij ij
i j E

r X attack budget


    (1.4d) 

0                                                          ( , ) , ,ijdY i j A d D     (1.4e) 

0                                                           ,nS n N    (1.4f) 

{0,1}                                                    ( , ) .ijX i j E    (1.4g) 

 

Expression (1.4a) maximizes the minimum cost of flow over the network. 

Equation (1.4b) is identical to the balance of flow Equations (1.3b). Equation (1.4c) is 

similar to Equation (1.3c) except the defense option is fixed in the inner decomposition. 

Equations (4d–4g) are carried over from the previous formulation. 

The inner AD sub-problem has a maxi-min structure that can be solved with two 

different approaches. The first approach is a decomposition of the primal problem. The 

second approach takes advantage of continuous flow variables (Y) to formulate a dual 

integer linear program (ILP) with a single level of optimization. The dual problem has a 

maxi-max structure which replaces the inner stage of decomposition. Either approach to 

the inner AD problem will function as a sub-problem for the outer decomposition. 

Solution elimination constraints (SEC) appear in both of the following approaches 

because it is possible that the inner decomposition can produce an attack that has been 

attempted previously (Alderson et al., 2014). If the repeated attack solution is utilized 

again in the outer decomposition, there is a possibility that the outer decomposition could 

cycle endlessly between previously found defense solutions. The SEC function as anti-

cycling constraints for the outer decomposition. SEC are only activated in a 

decomposition iteration if the attack found in the current iteration was also found in a 

previous iteration. Otherwise, the SEC is not included in an iteration. Activation of the 

SEC in an outer decomposition iteration forces the outer decomposition master problem 

to produce a new and different solution that breaks the cycling of the outer decomposition 

(Alderson et al., 2011). 

a. AD Primal Decomposition Formulation 

The maxi-min linear decomposition of the AD inner problem can be modeled by 

introducing new decision variables as described in Rardin (1998, pp. 159–160). The AD 
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primal inner subproblem represents the operator model, where the defender seeks to 

minimize the cost of moving resources from sources to destinations in a network with 

fixed defenses (W) and attacks (X). 

 
AD Minimum Cost Flow Primal Inner Subproblem Formulation: 

 ,
( , )

ˆ ˆmin ,
n ijd

ijd ijd ij ji ijd n n
S Y i j i j

i j A n N

c q X X Y S p
 

 

           
   (1.5a) 

( , ) (i, )

    ,njd ind n n
d D n j A d D n A

Y Y S demand n N
   

         (1.5b) 

ˆ                                       ( , ) , ,ijd jid ijd ijdY Y u W i j E d D       (1.5c) 

0                                                          ( , ) , ,ijdY i j A d D     (1.5d) 

0                                                           .nS n N    (1.5e) 

 

Expression (1.5a) is the operator objective, which is to minimize the cost of 

moving resources from source to destination in the network after defenses and attacks 

have occurred. Equation (1.5b)-(1.5e) restate their respective constraints from system of 

Equations (1.4). The set K represents iterations over an inner AD model. The result of 

each iteration of the AD primal inner sub problem is a lower bound on the inner 

decomposition. Each time the objective function is better than the existing lower bound, 

the bound is updated. 

The AD primal inner master problem represents the attacker problem, where the 

attacker has a fixed budget to damage or degrade the network in order to maximize the 

cost of moving resources from sources to destinations. In the AD primal inner master 

problem, the values of the flows (Y) and shortages (S) are fixed values input from the 

primal inner sub problem. 

 

AD Minimum Cost Flow Primal Inner Master Problem Formulation: 

,
max ,

ij AD
AD

X Z
Z   (1.5f) 

   
( , )

ˆˆ ˆ    ,AD ijd ijd ij ijdk jid jid ij jidk nk n
d D i j E n N

Z c q X Y c q X Y S p k K
  

               (1.5g) 

( , )

_ ,ij ij
i j E

r X attack budget


    (1.5h) 

{0,1}                                                    ( , ) ,ijX i j E    (1.5i) 
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 
' '

( , ) : ( , ) :
ˆ ˆ0 1

1 1                          ' .

ijk ijk

ij ij
i j E i j E

X X

X X k K
 
 

       (1.5j) 

 

Expressions (1.5f) and (1.5g) work together to create the objective of maximizing 

the cost of flow through the network through the choice of attacks. Equation (1.5g) 

represents the restriction of the problem through “cuts” of the feasible region performed 

by the choice of attack variables (X) in each iteration (k) of inner decomposition. 

Equations (1.5h) and (1.5i) restate Equations (1.3d) and (1.3i). 

The AD master problem produces an upper bound on the inner decomposition. 

During iterations that improve the upper bound, the attack associated with that iteration is 

saved as the best known attack (X*). When the inner decomposition completes because 

either the inner lower and upper bounds converge or the number of iterations (k) has been 

reached, then the best known attack (X*) is given as an input to the DAD outer 

decomposition master problem. 

Equation (1.5j) is the SEC for the outer decomposition. When the inner 

decomposition produces a best attack (X*) that is the same as a best attack from a 

previous outer iteration (k’), then there is a potential for cycling of the outer 

decomposition. In order to prevent cycling, the SEC of Equation (1.5j) is temporarily 

activated in the inner decomposition to ensure that an alternate best attack (X*) is 

produced that has never been produced in a previous outer iteration (k’). 

b. AD Dual ILP Formulation 

In order to eliminate inner iterations, we can alternatively formulate the AD dual 

ILP problem by taking the dual of the innermost minimization sub problem. The dual 

problem exists only when the network structure of the problem allows the flow variables 

(Y) to be treated as continuous variables. From the primal formulation, we note that 

Equation (1.3b) has dual variable [-πn] which represents each node and Equation (1.3c) 

has dual variable [-αijd] which represents each edge. We introduce both the dual variable 

for the node equations and the edge equations as negative values for convenience. 
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AD Minimum Cost Flow Dual ILP Formulation: 

, ,
( , )

ˆmax ,
ij ijd n

n n ijd ijd ijd
X

n N d D i j E

demand u W
 

 
  

        (1.6a) 

Subject to: 

   ( , ) , ,i j ijd jid ijd ijd ij jii j i j i j i j
c q X X i j A d D   

   
            (1.6b) 

                                                        ,n np n N     (1.6c) 
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_ ,ij ij
i j E

r X attack budget


    (1.6d) 

0                                                      ( , ) , ,ijd i j E d D      (1.6e) 

0                                                        ,n n N     (1.6f) 

{0,1}                                                    ( , ) ,ijX i j E    (1.6g) 
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1 1                          ' .
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i j E i j E
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X X k K
 
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       (1.6h) 

 

Expression (1.6a) is the dual objective function, which seeks to maximize the cost 

flow for an attack based on a given defense strategy. Equation (1.6b) is the dual for each 

node, which occurs over the set of all arcs and defense strategies. Equation (1.6b) has 

variables with set restrictions because of the relationship between the decision variables 

and the undirected edge set (E) vs. the directed arc set (A). Note that the node dual 

variables (πn) exist for all nodes, and the edge dual variables (αijd) exist over the set of all 

edges (E) and defense options (D). However, the edge dual variables do not exist over the 

set of all directed arcs A. Equation (1.6c) is associated with shortages at each node, which 

effectively places an upper limit on the node dual variables. Equation (1.6d) restates 

Equation (1.3d). The dual decision variables have non-negativity restrictions in Equations 

(1.6e) and (1.6f) because the dual variables are introduced with negative values. Equation 

(1.6g) ensures attack variables are binary values. Equation (1.6h) is a SEC that is 

activated as necessary to prevent cycling in the outer master problem as described in the 

explanation of Equation (1.5j). The output of the AD dual ILP is an attack (X) that is 

input to the outer decomposition.  

3. DAD Outer Decomposition 

The outer decomposition master problem takes the best known attack (X*) from 

either version of the inner AD problem as input to the DAD outer master problem. Each 
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outer decomposition iteration (k’) determines the best choice of defenses (W) in response 

to the attacks (X) that it has observed so far. Furthermore, each outer decomposition 

iteration (k’) must also determine the best combination of flow variables (Y) in 

conjunction with the defense variables (W). 

 
DAD Minimum Cost Flow Outer Master Problem Formulation: 

' ', ,
min ,

ijd ijdk nk
DADW Y S

Z   (1.7a) 

Subject to: 
 

   ' ' ' ' '
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ˆ ˆ ' ,DAD ijd ijd ijk ijdk jid jid ijk jidk nk n
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Z c q X Y c q X Y S p k K
  

             (1.7b) 
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    , ' ,njdk indk nk n
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Y Y S demand n N k K
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          (1.7c) 

' '                                    ( , ) , , ' ,ijdk jidk ijd ijdY Y u W i j E d D k K        (1.7d) 

' 0                                                           , ' ,nkS n N k K     (1.7e) 

' 0                                                         ( , ) , , ' ,ijdkY i j A d D k K      (1.7f) 

{0,1}                                                    ( , ) , .ijdW i j E d D     (1.7g) 

 

Expressions (1.7a) and (1.7b) work together to create the objective of minimizing 

the cost of flow through the network based on fixed values of attacks (X) obtained from 

the inner AD problem. Equation (1.7b) represents the restriction of the outer DAD 

problem through cuts of the feasible region performed by the choice of defense (W), flow 

(Y) and shortage (S) variables in each iteration (k’) of outer decomposition. Equation 

(1.7c) expands Equation (1.3b) to include flow (Y) and shortage (S) variables for each 

round of outer decomposition (k’). Equation (1.7d) ensures the flow (Y) variables do not 

exceed their maximum capacity for an edge for every iteration of outer decomposition 

(k’). Equations (1.7e)—(1.7g) enforce variable types. 

The output of the DAD outer master problem is a set of defense variables and an 

objective function value. The outer master problem updates the outer decomposition 

lower bound when the objective function value is greater than all previous outer iteration 

values. Whenever the outer lower bound is updated, the defense associated with that 

outer iteration (k’) is retained as the best known defense (W*). When the outer upper and 
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lower bounds match, the outer decomposition is completed and the best known defense 

(W*) is the optimal defense for the original DAD problem instance. 

D. EXAMPLE APPLICATION OF DAD PROBLEM 

Our test network for DAD minimum cost flow models is a 16 node fuel 

transportation network depicted in Figure 1 from Alderson, Brown and Carlyle (2015). In 

Figure 1, the black nodes represent supply nodes with 10 units of fuel each, and the white 

nodes represent demand nodes with a demand of one unit of fuel each. Each edge 

between the nodes has a cost of one unit for each unit of fuel that traverses the edge. A 

double solid line represents system redundancy with two edges connecting a pair of 

nodes. If an edge is defended, it is invulnerable to attack. Defending a solid line edge has 

a defense cost of one unit. Dashed lines represent edges that can be built as defenses with 

a defense cost of two units. We assume that new edges cannot be attacked. 

 

Figure 1.  Test Network for DAD Models. Adapted from Alderson et al. (2015). 

Different problem instances of the DAD tri-level optimization model are 

considered by varying both the defender and attacker budgets from zero to five units 

each, resulting in 36 different problem instances. Both decomposition methods were 

calculated using GAMS software version 24.5 with the CPLEX solver on a computer 

with Microsoft Windows 7, a 3.2 GHz processor and 8 GB of RAM. We can solve 36 

instances of the DAD problem on the test network using nested decomposition in roughly 
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60 minutes. We can solve the same 36 instances using the dual ILP and decomposition in 

roughly 8 minutes. For this test case, the difference in solution speed is dramatic, with the 

dual ILP and decomposition method clearly superior. 

For the 36 problem instances, both implementations of the DAD decomposition 

produced the same objective function values as Alderson et al. (2015). In some cases, 

more than one combination of defenses and/or attacks can produce the same optimal 

solution value. Table 1 shows a portion of the results for the DAD decomposition applied 

to the network of Figure 2 for varying attack strategies when the defense budget is fixed 

at four units. Table 2 takes the opposite view of supposing that the defender has 

intelligence that the attacker budget is fixed at four units, and there is a varying defense 

budget available. Edges not appearing in Tables 1 and 2 have no recommendations for 

attack or defense. Green colored cells indicate defensive action and red colored cells 

indicate attack action in Tables 1 and 2. 

Table 1.   Test Network Solution with Fixed Defense Budget of Four Units 

Defense Budget= 4 Attack Budget 
Edge 0 1 2 3 4 5 
[3,8] Build Build Build Build None None 
[5,10] Build Build Build None Build None 

[10,11] None None None Protect Protect Protect 
[10,13] None Attack None Protect Attack Protect 

[1,5] None None None None Protect None 
[2,7] None None None None None Protect 
[7,8] None None None None Attack Protect 
[8,12] None None Attack Attack None Attack 

[11,12] None None Attack None None Attack 
[1,2] None None None Attack None Attack 
[9,13] None None None Attack None Attack 

[11,15] None None None None Attack Attack 
[5,9] None None None None Attack None 

Flow Cost 20 23 37 47 58 65 
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Table 2.   Test Network Solution with Fixed Attack Budget of Four Units 

Attack Budget= 4 Defense Budget 
Edge 0 1 2 3 4 5 
[3,8] None None None None None Build 
[5,10] None None None Build Build None 

[10,11] Attack None Attack Protect Protect None 
[10,13] Attack Protect Attack Attack Attack Protect 

[1,5] None None None Attack Protect None 
[2,7] Attack None None None None None 
[7,8] None Attack None Attack Attack None 
[8,12] Attack Attack Attack None None Protect 

[11,12] None None None None None None 
[1,2] None None None None None Attack 
[9,13] None Attack Attack None None Protect 

[11,15] None None None None Attack Attack 
[5,9] None None None None Attack Attack 

[13,14] None None None None None Attack 
[9,10] None None Build None None None 
[6,10] None Attack None Attack None None 

 Flow Cost 113 82 74 66 58 53 
 

E. SUMMARY OF CONTRIBUTIONS 

The existing literature defines the basics of the DAD problem applied to 

infrastructure systems, but there are many unexplored topics associated with this 

problem. Literature provides formulations only for minimum cost flows and shortest 

paths. Literature also provides a nested decomposition approach with SEC to obtain an 

optimal solution to a DAD problem instance. This dissertation seeks to expand 

knowledge of DAD problems beyond the one solution approach. We address three 

interesting areas of the DAD problem that have not been developed in existing literature. 

1. Efficient Enumeration Algorithms for the DAD Model 

Chapter II explores the ability to generate multiple optimal solutions and near 

optimal solutions to a DAD minimum cost flow problem instance. The knowledge that 

equivalent optimal solutions exist can be useful information to a decision maker. For 

example, if an analyst has a defense budget of three units to defend a system against a 

worst-case attack, it could be helpful to know if there is only one possible optimal 
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defense or more than one equivalent optimal defenses. Many equivalent optimal solutions 

can present a range of equally good choices to defend a system. Similarly, a decision 

maker may want to know all of the defense options that are within a small fixed 

percentage of the optimal solution. Decision makers could then use a range of options to 

help weigh other factors to the system that cannot be modeled, but are still important to 

consider. In the real world, some defenses that appear to be equal on paper may have 

other considerations that make one set of defenses preferable to another set of defenses, 

even though they both produce the same objective function value. Traditionally, finding 

many optimal and near optimal solutions would require resolving the DAD problem for 

each additional solution that is desired. We design an algorithm that can find all of the 

optimal and near optimal solutions to a DAD minimum cost flow problem efficiently. 

Chapter II harnesses the theory of implicit enumeration (IE) to efficiently 

generate all equivalent optimal solutions. IE can also find all near optimal solutions for 

any specified solution tolerance. Implicit enumeration works by restricting and 

subsequently relaxing the defense budget of the original problem instance. IE reduces the 

tri-level DAD problem into a group of simpler bi-level AD sub problems arranged in a 

tree structure in order to systematically build solutions. IE avoids the possibility of listing 

every possible solution by rejecting combinations of defenses and attacks that could not 

lead to an optimal or near optimal solution. The original application of IE to DAD 

optimization problems was developed by Scaparra and Church (2008). These authors 

present the use of IE in the context of defending and attacking the placement of 

warehouse facilities. Our contribution is to adapt, generalize and expand on known IE 

theory and apply it to the tri-level DAD minimum cost flow problem. 

2. Impact of Nested Defenses on Optimality 

Chapter III investigates system defense planning under uncertain budget 

scenarios, and how that uncertainty impacts optimality. It may be possible that a system 

analyst may not be certain about the budget for his or her defenses, the attack budget of 

the adversary, or both. When faced with budget uncertainty, the analyst may produce a 

list of prioritized defenses for the system. The prioritized list would include the best 
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defense, second best defense, third best defense, and so on. A prioritized list becomes a 

set of nested defenses to be chosen when the budget scenario becomes known. We use the 

term nested to refer to a monotonic sequence of sets, where each set of defenses for a 

particular budget scenario contains the set of defenses for the next smaller budget 

scenario. The use of nested defenses is attractive to decision makers because it simplifies 

the complex analysis of choosing the best defenses under uncertain budgetary scenarios 

into a single list. 

The set of nested defenses almost always is not the same as the set of optimal 

defenses for any particular defense and attack budget. It is clear in existing literature that 

the best defenses chosen for a defense budget of two units is usually not a subset of the 

defenses chosen for a defense budget of three units, and so on. An example is shown in 

Figure 2 from Alderson et al. (2015). Figure 2 shows that if the defense budget is known, 

but the attack budget is unknown for the fuel network, then the elements of an optimal 

defense change. In Figure 2, the panels labeled (b) to (e) show that even when the defense 

budget is unchanged at four units, each change in the attack budget from two to five units 

results in a different set of optimal defense elements chosen and a different set of worst-

case attacks. The optimal defenses for the network are shown as blue edge lines, and the 

worst-case attacks are shown as small explosions on edges. A similar effect exists when 

the defense budget is unknown and the attack budget is known. 

 

Figure 2.  Optimal Defenses Change as the Attack Budget Changes. Source: 
Alderson et al. (2015). 

Chapter III uses the same network as Alderson et al. (2015) to investigate the 

effects of nested defenses. We examine how nested defenses differs from the optimal 

solution for any particular defense and attack budget scenario and, in particular, we 
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quantify the “cost” of requiring a set of defense plans to be monotonic. A gap exists in 

current literature for how to address the situation when both defense and attack budgets 

are uncertain, and we propose a strategy for that situation. We examine various heuristic 

nesting strategies and compare their performance against the known optimal solutions. In 

order to find the best possible nested defense, we develop a new parametric programming 

formulation of the DAD minimum cost flow problem that accepts uncertainty in the 

defense and attack budgets. This new formulation generates a nested defense that is as 

close as possible to the set of optimal non-nested solutions. 

3. Incorporating Heuristics to Speed Up DAD Solution Algorithms 

Chapter IV develops a DAD model for the constrained shortest path (CSP) 

problem. To the best of our knowledge, solution procedures for the DAD CSP problem 

do not exist in the literature. The challenge associated with the CSP problem is that the 

side constraint placed on a shortest path problem breaks the network structure of the 

problem. Loss of the network structure of the problem results in a much more difficult 

binary program because the path variables (Y) cannot be treated as continuous. First, we 

formulate and solve instances of the DAD CSP by adapting existing DAD nested 

decomposition techniques from the literature. We find the point where existing DAD 

solution techniques become either intractable or excessively time intensive to solve the 

problem. Our goal is to develop alternatives and improvements to the nested 

decomposition approach to solve DAD CSP problem instances more efficiently. 

We improve the time it takes to find a solution to a DAD CSP instance by 

applying Lagrangian relaxation. Ahuja, Magnanti and Orlin (1993) explain the use of 

Lagrangian relaxation on a regular CSP problem instance involving a small test network. 

Fisher (1981) notes that the Lagrangian relaxation is able to find a greatest lower bound 

on an original problem instance. Since only a greatest lower bound can be determined, we 

observe Lagrangian relaxation is a heuristic approach to finding a solution. 

We expand the Lagrangian relaxation techniques found in existing literature to 

include defending and attacking the CSP problem. We develop two different alternative 

algorithms for Lagrangian relaxation of DAD CSP. The first algorithm closes the gap 
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created by the Lagrangian lower bound by using path enumeration techniques proposed 

by Carlyle, Royset and Wood (2008). The second algorithm takes advantage of the fact 

that iterative Lagrangian relaxation searches for the greatest lower bound and the attacker 

model seeks to maximize the length of the shortest path. These similar goals allow us to 

combine the attacker problem and Lagrangian relaxation into a single mathematical 

model. Both algorithms are able to find a heuristic solution to DAD CSP quickly. 

We also develop algorithms to combine our heuristic approaches with traditional 

methods to obtain provably optimal or near optimal solutions. By themselves, our 

improvements to Lagrangian relaxation remain a heuristic approach to the DAD CSP 

problem. The goal of our combined algorithms is to reduce the time required to obtain an 

optimal or approximately optimal solution to a DAD CSP instance when compared to 

regular nested decomposition. We test our algorithms on medium and large networks to 

show the scalability of our innovative approaches to solve the DAD CSP problem. Our 

results show that our new algorithms are significantly faster than regular nested 

decomposition to find an optimal or near optimal solution to a DAD CSP instance. 

  



 23

II. IMPLICIT ENUMERATION OF DAD PROBLEM 

A. IMPLICIT ENUMERATION THEORY 

Wagner (1975) gives a general goal for any enumeration algorithm as follows: 

“What we want are techniques that partially enumerate a manageable number of 

possibilities and implicitly enumerate the rest” (p. 473). The method of systematically 

discarding provably suboptimal combinations of decision variables is called Implicit 

Enumeration (IE). Formally, IE refers to “a systematic evaluation of all possible 

[feasible] solutions without explicitly evaluating all of them” (INFORMS, 2015). We 

develop an IE algorithm for defender-attacker-defender (DAD) problems that enumerates 

defense plans in a specific order. We use a bounding argument based on evaluating the 

resulting attacker-defender (AD) subproblem to significantly reduce the amount of 

enumeration required. 

IE represents an alternative algorithm to obtain solutions for DAD problem 

instances. IE does not use the traditional nested decomposition algorithm in Chapter 1. 

Our enumeration algorithm manipulates the defense budget to restrict and relax the 

feasible region of the defense variables (Ψ) in DAD model (2.1a). Our IE algorithm 

systematically fixes defense variables (W) and solves a series of bi-level AD models 

shown in (2.1b). The IE algorithm can also find multiple equivalent solutions to a 

problem instance when they occur. Similarly, if all solutions within a given percentage of 

the optimal solution are desired, IE can generate all of possible objective function values 

and the combinations of variables needed for each solution. 

 

( )
min max min ( , , )
W Y WX

f W X Y
    (2.1a) 

ˆ( )

ˆmax min ( , , )
X Y W

f W X Y
    (2.1b) 

 

The IE algorithm creates a tree of AD subproblems beginning with the restriction 

of the defense budget to zero units at the root node, followed by incremental relaxations 

of the defense budget at subsequent nodes. Every node in our enumeration tree represents 
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an instance of an AD subproblem with a fixed defense plan ( Ŵ ) that produces a 

corresponding worst-case attack (X). The children of this parent node are specified by 

adding one more fixed defense ( Ŵ ) to the defense plan if its corresponding AD 

subproblem results in either a change to the worst-case attack (X) or an improvement of 

the objective function value. Enumeration of fixed defenses in child nodes is ended when 

the relaxed defense budget reaches its original value. 

In this chapter, we utilize the DAD minimum cost flow problem formulation and 

the 16 node fuel transportation network (Alderson et al., 2015) described in Chapter I. In 

the remainder of this chapter, we assume that there are exactly two defense options for 

each edge: d0 means no defense (or no construction for an edge that does not have 

capacity in the undefended case) and d1 represents the sole defense option for any edge 

that can be defended or built. We use the term defended to refer to edges for which we 

choose option d1 and “undefended” for edges which we choose option d0. In cases where 

we want to model more than these two defense options for an edge, our discussion 

generalizes in a straightforward way. 

1. Enumeration of Defenses in the Literature 

Scaparra and Church (2008) develop an enumeration algorithm to solve a specific 

optimization problem called the “R-Interdiction Median with Fortification” (RIMF) 

problem, which is concerned with the defense of a limited number of facilities against 

attack. These authors uses duality within (2.1b) to treat a tri-level optimization problem 

with a bi-level model in (2.1c). 

 

X,, ,

ˆmax ( , , , )f W X
 

 
   (2.1c) 

 

Scaparra and Church state “In our specific case, the attacker–user problem can be 

modeled as a single-level mixed-integer [program] (MIP), so that what is in principle a 

tri-level defender–attacker–user problem can be reduced to a bi-level min–max problem” 

(2008, p. 1906). Scaparra and Church take advantage of the operator model continuous 

variables (Y) in order to reduce the bi-level AD model (2.1b) into a single level 
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optimization model similar to (2.1c). IE has not been successfully implemented on a tri-

level DAD optimization problem without using duality. Scaparra and Church state “To 

the best of the authors’ knowledge, no efficient algorithms have been proposed to deal 

with three-stage defender-attacker-user problems” (2008, p. 1906). 

In the RIMF problem, Scaparra and Church (2008) observe that the optimal 

defense against a worst-case attack must include at least one of the items that would be 

attacked if the system was undefended. To prove their point, the authors choose a starting 

point in IE of an undefended system, where all of the defense variables are fixed to zero, 

and observe the worst-case attack. Next, the authors observe that the only way to prevent 

the worst-case attack from occurring again is to defend one of the items that was attacked 

in the undefended scenario. The authors reason that “this observation can be easily 

explained by noticing that if none of the facilities in the optimal interdiction set is 

protected, then it is still possible to interdict all of them and the worst possible case of 

interdiction is not prevented” (2008, p. 1910). 

This observation serves as one of the key concepts for our IE theory. At each node 

of IE, a subproblem is formed and a worst-case attack is observed. The AD subproblem 

in RIMF is similar to (2.1c). In the RIMF problem, the next layer of the IE tree is created 

by enumerating a fixed defense ( Ŵ ) for each of the observed attacks in an AD sub 

problem. The authors realize that any other defense that is not responding to a specific 

attack is not going to prevent that same attack from occurring again. Therefore, if the 

next defense chosen in the subsequent round of IE does not specifically prevent the worst 

attack from occurring again, then the selection of that particular defense at that particular 

time must be a suboptimal choice. 

2. Contributions to IE Theory 

To the best of our knowledge, this is the first IE scheme of its type designed for 

the general DAD model. We provide an enumeration scheme similar to that proposed by 

Scaparra and Church (2008), but enhanced to handle the more general case. Our research 

makes two advances in IE theory. First, we expand IE theory to include more general tri-

level DAD models. Our algorithm has the ability to use the dual MIP approach (2.1c) and 
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it can also incorporate solution procedures using (2.1b) for other tri-level DAD models 

where the dual MIP technique cannot be used. In this case, IE of fixed defenses results in 

bi-level AD sub problems that can be solved with traditional methods. 

Our second contribution to IE theory is that our algorithms include the ability for 

IE to include network design as a potential defense for a tri-level DAD model. We 

introduce the ability to add new edges as system defenses. In the RIMF problem, 

Scaparra and Church (2008) note that defending each of the worst-case attacks one by 

one will lead to changes in the worst-case attack, and therefore they should be the only 

candidates for defenses. In the more general DAD setting, however, a defense variable 

can refer to the creation of new components. If the capacity of an undefended arc is zero, 

but the capacity of a defended arc is non-zero, then that arc only exists if we defend it. 

We define new edge transport capacity (u) to be zero when the edge is not added to the 

network (d0), and greater than zero when it is added to the network as a defense (d1). In 

this case, our enumeration must allow that new edges can alter the performance of the 

system, and therefore can reduce the impact of the worst-case attack. 

Proposition 2–1: The addition of new edges is a feasible defense strategy against worst-

case attack. 

In the RIMF problem, prevention of a worst-case attack must include defending at 

least one of the items in the worst-case attack. We prove that this observation does not 

hold for a general DAD problem instance where new edges can be used as defenses with 

a counterexample. We consider the test network with a defense budget of four units and 

attack budget of two units. The undefended attack plan would be to attack edges (2, 7) 

and (9, 13) resulting in a system cost of 62. The optimal defense is to build the new edges 

(3, 8) and (5, 10), which does not involve defending one of the original attacked edges. 

Furthermore, the optimal system cost has improved to 37 and the attackers new best 

attack plan is to interdict edges (8, 12) and (11, 12). The resulting best defense of the 

network no longer involves the original attacked edges, or any existing edge in the 

original network. The two graphs in Figure 3 show the results, with defended edges in 

blue and attacked edges with a red “X.” 
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Undefended Worst-case Attack  Optimal Defense and Worst Attack 

Figure 3.  Optimal Defense with Addition of Edges on Test Network 

Our counterexample shows there are other choices in the general DAD problem 

besides defending existing edges to prevent an observed worst-case attack. The challenge 

is to determine an efficient algorithm to enumerate defenses when new edges can be 

added to defend a system. 

B. ENUMERATION TREE CONCEPTS  

Our enumeration algorithm explores a tree of subproblems. Each node in the tree 

represents an AD subproblem with a specific fixed defense that is based on a restriction 

of the original defense budget. The AD subproblem instance for a node is a simplified bi-

level model that is easier to solve than the original tri-level DAD optimization problem. 

Child nodes represent the inclusion of one additional fixed defense in response to the 

worst-case attack observed in a parent node AD subproblem. 

The root node in our enumeration tree represents the initial restriction of the 

original DAD problem instance to a defense budget of zero units. Thus, the AD 

subproblem associated with the root node has no fixed defenses. 

Branches from a parent node represent the choice of one new defense in response 

to the worst-case attack of an AD subproblem for a parent node. Any defense chosen as a 

branch must improve system performance or change the worst-case attack observed at the 

parent node. Thus, each branch represents one defense that is an appropriate response to a 
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worst-case attack of a parent node. Conversely, the branches that form a path from the 

root node to a particular node give the fixed defenses of the AD subproblem at that node. 

Other nodes in the IE tree represent AD sub problems that relax the defense 

budget restriction at the root node. Any node can be identified by its depth and breadth. 

Depth is defined as the axial distance on the tree from the root node. The depth of the 

node in the tree tells the number of defenses that are fixed in its accompanying AD 

subproblem instance. Depth starts at zero at the root node because the root node has zero 

fixed defenses. Tree depth grows by one for each additional defense. For example, if a 

node has a depth of two in the IE tree, then the AD subproblem associated with that node 

has two fixed defenses. Breadth is defined as the number of nodes at a particular depth. 

Child nodes on a tree are created when the remaining defense budget of a parent 

node is greater than the cost of adding an additional defense. Branches based on defenses 

against the worst-case attack of a parent node represent fixed defenses to be embodied in 

new AD sub problems associated with new child nodes. A leaf node on the tree occurs 

when the number of fixed defenses at a node exhausts the original defense budget. A 

defense budget could be exhausted at different depth levels for different nodes because 

the cost of defending existing edges or adding new edges may not be the same. 

Traditionally, elimination of sections of an enumeration tree that cannot lead to an 

optimal solution is called pruning (Wolsey, 1998, p. 94). We seek to prune the IE tree by 

developing characterizations of a suboptimal solution to the DAD problem or 

corresponding AD sub problem. The pruned sections of the tree will not need to be 

explored because an optimal solution could not be developed from the nodes representing 

these AD subproblem instances. In this chapter, we develop some pruning rules that use 

the development of a decreasing upper bound on the DAD master problem to eliminate 

many possible defense combinations from consideration. 

1. Data Structures at an IE Tree Node 

To better understand how a node functions in an IE tree, we describe what each 

node represents and the various pieces of information that each node maintains. Each 
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node in the IE tree represents an AD subproblem with a fixed set of defenses. Each node 

maintains several distinct pieces of information. 

 Parent[n] is the parent node of node n. Only the root node does not have a 
parent. 

 Children[n] is a list of the child nodes for a node n. Child nodes have one 
additional fixed defense than the AD subproblem of a parent node. 

 Branches[n] is a list of branches from a parent node n to child nodes. 
Branches represent the addition of a defense to either improve the 
objective function of the parent AD subproblem or change the parent node 
worst-case attack. 

 Objective[n] is the objective function value of the AD subproblem 
solution of Equation (1b) or (1c) associated with node n. 

 Attack[n] is the subset of edges of the worst-case attack associated with 
the AD subproblem solution of node n. 

 Budget[n] is the amount of defense budget utilized at node n. We subtract 
the budget utilized at a node from the original total defense budget to 
determine the amount of remaining defense budget available for a child 
node. Selecting an existing edge for a fixed defense or adding a new edge 
as a fixed defense at a child node subtracts from the remaining defense 
budget inherited from a parent node. If the remaining defense budget is 
less than the cost of any defense, then the node is a leaf of the tree. 

 Inclusion[n] is the list of fixed defense edges at node n. It is a subset of 
edges (i, j) that are fixed to the defended option (d1). Inclusion lists are 

inherited from parent nodes and expanded. For example, 
1îjdW =1. 

 Exclusion[n] is the list of edges that cannot be defended at node n. It is a 
subset of edges (i, j) that are fixed to the undefended defense option (d0). 
Exclusion lists are inherited from parent nodes and expanded. For 

example, 
0îjdW =1. 

2. Requirements of IE tree branches 

A branch from a parent node in the IE tree represents one new defense to select in 

response to the worst-case attack of the subproblem contained within a parent node. A 

new defense could be the protection of an existing edge or the addition of a new edge to 

the network. In order for a branch to exist, three things must be true.  
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 There must be enough remaining defense budget to allow for a new 
defense to the system. In the test network, adding new edges as defenses 
costs more than defending existing edges. The new defense is represented 
by the formation of a new child node at the end of the branch.  

 An unprotected or unadded piece of the network must exist to defend.  

 The defense option that is considered by the branch must result in a 
change of the worst-case attack plan or an improvement in the subproblem 
instance objective function value from the parent node to the child node. If 
a change does not occur, the defense was not effective in prevention of the 
worst-case attack encountered in the parent node AD subproblem. If the 
AD subproblem objective function value gets worse from parent node to 
child node, the defender is not making an improvement to the system. 
Defenses that worsen the objective function are not added to the IE tree. 

C. IE ALGORITHM FUNDAMENTALS 

The strategy to optimally solve a DAD problem instance with IE is to restrict the 

defense budget to zero and then relax it one unit at a time. We start with an undefended 

system and then add defenses to AD sub problems one at a time until the defense budget 

is exhausted. Existing edge defenses can be added one by one if they either change the 

worst-case attack of the parent node or improve the parent node objective function value. 

The optimal solution to the root node AD subproblem forms an upper bound on 

the master problem. The attack plan of the root node AD subproblem provides one of two 

methods to add branches to the next level of depth in an IE tree. Branches from the root 

node are added by defending each of the attacked edges from the root node worst-case 

attack one by one. Additional branches can also add a new edge as a defense, as long as it 

improves system performance or changes the worst-case attack. 

Child nodes from each branch represent the network with the addition of either a 

defended or added edge. Each child node is a new AD subproblem instance because it has 

new fixed values for the defense variables ( Ŵ ). The optimal solution to each of these 

new AD subproblem instances determines the child node objective function value and 

worst-case attack. Each AD subproblem instance optimal solution may also improve the 

upper bound on the DAD master problem instance. Each child node then becomes a 

parent node to determine the next new defense if the remaining defense budget is not 
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exhausted. Branches from each new parent node are formed in the same manner. This 

process repeats until the defense budget is expended. When a node is created with no 

remaining defense budget, that node is called a leaf node. 

The inclusion list and objective function value of a node represents a feasible, but 

not necessarily optimal, solution to the original DAD problem. The node or nodes with 

the best objective function value represent the optimal solution to the original DAD 

problem instance. Figure 4 illustrates the beginning of an IE tree based on the test 

network with a defense budget of three units and an attack budget of two units. The 

system cost is shown as the objective value in the tree. 

 

Figure 4.  Portion of an Implicit Enumeration Tree 

1. Skipping and Reconsideration of Potential Defenses 

Branches form from a node based on defenses that can either improve the 

objective function value or change the worst-case attack. Only certain existing edges and 

certain new edges will meet the criteria for becoming an additional defense from a parent 
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node to a child node. Those edges that do not become defenses from a parent node to a 

child node are “skipped” from consideration for branches at a parent node. We use the 

term skipped because these edges are not permanently prohibited from being a defense. 

Each child node formed from a parent node via a branch represents a new AD 

subproblem instance. Each child node AD subproblem might feature a different worst-

case attack that could be improved by defending an edge that was skipped by one of the 

previous parent nodes. This concept of skipping edges as enumerated defenses at an AD 

subproblem instance and then reconsidering them in subsequent AD subproblem 

instances is an essential feature of being able to efficiently construct an IE tree. 

2. Avoiding Repeated Calculations 

In order to improve the computation efficiency of our basic IE algorithm, we can 

perform a procedural check in the algorithm to prevent identical calculations from being 

performed more than once. Absent any oversight, an IE tree could have repeated 

inclusion lists at different nodes which would cause identical calculations. A repeated 

inclusion list will have all of the same elements, but that combination of defense elements 

may be ordered in a different permutation. Both of these nodes would have the same AD 

subproblem instance because the order of defense items does not affect the calculation. 

Repeat defenses at different nodes mean that the same AD subproblem instances must be 

computed multiple times. Calculating the same AD subproblem instance more than once 

is inefficient. The problem of repeating calculations is shown in a snippet of an IE tree of 

the test network with defense budget of two units and attack budget of four units in 

Figure 5. In the example, one node has an inclusion list to defend edges (10, 13) and (8, 

12) and another node has an inclusion list of edges (8, 12) and (10, 13). 
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Figure 5.  The Potential for Repeated Calculations in an IE Tree 

The exclusion of repeated calculations can be thought of as a simple pruning 

mechanism for an IE tree. An exclusion list of previously considered defenses should be 

maintained for each node to prevent repeated identical AD subproblem instances. The 

exclusion list for a node is made by examining the defense chosen by the branches 

formed from a parent node. The first branch of a parent node does not exclude any new 

defenses, but the second branch prohibits the defense chosen by the first branch. The 

third branch prohibits the defenses chosen by the first two branches, and so on. Exclusion 

lists at a node will also include the exclusion lists of a parent node. The exclusion list can 

be stated as follows: 

Exclusion rule: Once a branch is formed from a parent node that represents a particular 

defense, all subsequent branches from that parent node are prohibited from utilizing that 

defense. All descendent nodes from those subsequent branches are prohibited from 

selecting that defense as well. 

For example, in Figure 5, if the first node at depth one defends edge (8, 12), then 

all of the other child nodes at depth one from the same parent node will be prohibited 
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from also defending edge (8, 12). When there are child nodes at a particular depth from 

different parent nodes, the exclusion list rule only applies to the child nodes from the 

same parent node. Exclusion lists are made from side to side for all of the branches from 

a particular parent node, with the beginning nodes not excluding anything, and following 

nodes excluding defenses that have been attempted by previous nodes at the same depth. 

Exclusion lists are passed from parent to child node and then appended with the excluded 

edges at the new depth. With the exclusion list mechanism, repeated calculations of the 

same AD subproblem instance are eliminated from the IE tree. Figure 6 illustrates how 

exclusion lists grow by showing a part of the IE tree for defense budget of three units and 

attack budget of two units. In the example, defense of edge (2, 7) is initially considered in 

depth level one, and excluded by all other nodes at that depth. 

 

Figure 6.  Exclusion Lists in an IE Tree 

D. PRUNING OF NEW EDGES  

The term new edge refers to an edge that has zero transport capacity (u) under the 

undefended defense option (d0), and a transportation capacity (u) greater than zero when 
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defended (d1). This type of edge can be thought of functioning in the network only if it is 

chosen as a defense. When considering how to evaluate the design of new edges as 

defenses to a network, we desire to develop a rule to exclude or prune some of the new 

edges from the tree when it is known that they will lead to suboptimal solutions of the 

DAD problem instance. In order to use an IE strategy for a network that has the 

capability of new edge design, a different approach is required than seen in Scaparra and 

Church (2008). The simplest method for an IE tree with new edges would be to consider 

every new edge for each node in the tree one at a time for network defense. But, the 

problem with considering each new edge at each node is that the total number of nodes in 

the enumeration tree will be very large. Without a rule for excluding some new edges at 

each new node, the resulting algorithm would perform inefficient explicit enumeration. 

We also desire to develop a pruning rule that preserves the ability to implicitly 

enumerate defenses one at a time. Situations may exist where considering new edge 

defenses one at a time in an enumeration scheme may fail to identify the optimal defense. 

We show that situations exist where new edges could be considered in groups of two or 

more as a single defense. We desire to eliminate those situations from our enumeration 

strategy because it can result in a combinatorial explosion of the number of defenses that 

would need to be considered at each node.  

1. A Simple Pruning Rule for New Edges Is Incorrect 

Unfortunately, we cannot employ a simple pruning rule that restricts our 

consideration to those new components whose addition improves the performance of the 

network or reduces the impact of the worst-case attack. The following counterexample 

shows why a simple pruning rule does not always generate to the optimal defense. 

Consider the simple five node network in Figure 7. The objective of the network 

is to move resources from source to destination at minimum cost. Define a transshipment 

node as a node where no source or demand for resources exists. A source node is black, a 

destination node is white, and a transshipment node is grey. Each destination node 

requires one resource, and the source node has exactly enough resources to fulfill all 

requirements. There is a cost of one unit to move one resource over any one edge. Edges 
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have unlimited capacity, and attacked edges are unusable. There is a penalty cost of 10 

units if a destination node does not receive a resource. There is no cost for either using or 

not using a transshipment node. Existing edges are solid lines, and edges that may be 

added to the network are dashed. New edges can transport resources only if built. Nodes 

1 through 4 are connected as shown, and node 5 is disconnected. Node 5 may be 

connected with the addition of one or more of the dashed line edges. The attacker has a 

budget of two units. The defender has a budget of two units, and defending an existing 

edge or building a new edge both cost one unit. Newly added edges to the network are 

invulnerable to attack. 

 

Figure 7.  A Minimum Cost Flow Network with a Transshipment Node 

Proposition 2–2: If new edges that could be added to a network are connected to a 

transshipment node, then the new edges cannot be considered for exclusion one at a time 

in an IE tree if no change to the worst-case attack or improvement in network 

performance is observed. 

Proof of Proposition 2–2: Proof via contradiction. Assume to the contrary that 

new edges connected to transshipment nodes are considered one at a time for addition to 

the network. We use the five node network of Figure 5 as an example. The undefended 

attack plan for the root node would be to attack edges (1, 2) and (1, 4) which disconnects 

that source from the network and stops all flow of resources. The attack is a minimal 

edge-cut (Chartrand & Zhang, 2012, p. 116) of Figure 7. The undefended objective 

function would have value 30 because each destination node would each incur the 

penalty cost and no resources would flow over edges. Considering the addition of edge 
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(1, 5) by itself to the network as one defense would not have any effect, since no 

resources would reach their destination with this one addition. No resource would flow 

from node 1 to node 5 because there is a cost of 1 to use edge (1, 5) and no incentive to 

move one unit of resource to node 5. A similar argument applies to the addition of edge 

(3, 5). In both cases, these singular defenses would neither change the worst-case attack 

nor the network objective function value. If we consider new edges one at a time, both 

new edges would be excluded from the first set of branches to the IE tree. The optimal 

solution to this problem, though, is to add both edges (1, 5) and (3, 5) to the network 

simultaneously. Note that each source and destination node in the network with both new 

edges added is now 3-connected (Chartrand & Zhang, 2012, p. 117). Since each source 

and destination is 3-connected, the attacker cannot use two attacks to stop the flow of 

resources from any source to any destination. Notice that the resulting objective function 

of the defended network would improve to eight, but the worst-case attack would not 

change. Thus, a contradiction is reached because the optimal solution for the DAD 

problem instance can only be found in this network by considering both new edges 

simultaneously. Figure 8 shows the result, and the numbers above the edges represent the 

amount of resource flow on that edge.▪ 

 
(a) Undefended Worst-case Attack   (b) Optimal Defenses and Resulting Attack 

Figure 8.  New Edge Consideration with Transshipment Nodes 

We make another proposition about new edge exclusion in enumeration trees that 

does not rely on transshipment nodes with the network in Figure 9. In Figure 9, assume 

source node 1 has supply of three resources and source node 2 has a supply of one 
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resource. Both of the source nodes have exactly the amount of supply that is required by 

the destination nodes that they are connected to. Edges (1, 2) and (4, 6) do not currently 

exist, but they may be added as defenses. The defender has a defense budget of two units, 

and the attacker has a budget of one unit. Again, destination nodes are white, have a 

demand of one resource each and have a penalty cost of 10 if the demand is not satisfied. 

Solid lines are existing edges, and dashed lines are edges that could be built as defenses. 

 

Figure 9.  A Minimum Cost Flow Network with No Excess Supply 

Proposition 2–3: If source nodes do not have supply in excess of the total demand at 

destination nodes, then no new edges that could be added to a network can be considered 

one at a time in an IE tree. 

Proof of Proposition 2–3: Proof via counterexample. Assume to the contrary that 

edges could be excluded one at a time in a network that has nodes with no excess supply 

and consider Figure 9. In Figure 9, the worst-case attack would be to attack edge (1, 3) 

which cuts off flow to nodes 3, 5 and 6, resulting in an objective value of 31. The first 

best defense would be to defend edge (1, 3) to restore flow. Building edge (1,2) by itself 

would have no effect on either the worst-case attack or optimal value, since the worst-

case attack would still occur at (1,3) and cut off the same nodes. Building edge (4, 6) by 

itself would also have no effect on either the worst-case attack or optimal value, since no 

resources could travel over the new edge. In this case, the IE tree would exclude both 

new edges from further consideration. The IE algorithm would next attempt to form the 

second defense. With edge (1, 3) defended in the first round of enumeration, the new 

worst-case attack would be edge (3, 5) to cut off flow to nodes 5 and 6. When 
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considering the second level of defenses, the IE tree algorithm would not be able to 

consider both new edges together, because the formation of the first layer of depth of the 

tree would have excluded both edges individually. The IE tree would only consider the 

new edges individually for the second defense, and they would not be optimal. However, 

the contradiction occurs because the optimal defense is to build both edges (1, 3) and (4, 

6). The worst-case attack in response to this defense is unchanged. This defense would 

not be found by examining new edges for addition one at a time. When the two new 

edges are added simultaneously, the network topology becomes a 2-connected graph 

(Chartrand & Zhang, 2012, p. 115). Any single attack will result in a network that is still 

a 1-connected graph, and all resources can flow to all destination nodes. Figure 10 

illustrates the proof.▪ 

 
(a) Undefended Worst-case Attack  (b) Optimal Defenses and Resulting Attack 

Figure 10.  Lack of Supply in Excess of Total Demand 

2. Excess Supply and Incentive 

Propositions 2–2 and 2–3 provide ample evidence that the simple pruning rule is 

flawed. But, we still desire a decision rule for pruning some new edge branches in an IE 

tree. In order to develop a pruning rule that can incrementally add defenses one at a time, 

we must first introduce some additional terminology.  

Define excess supply as a source node that has more resources available than it 

can deliver to all destination nodes that are connected to it. A source node is connected to 

a destination node by one or more paths of existing edges or previously added edges. This 

definition allows for the possibility that the network could be connected or disconnected 
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into multiple subnetworks. If an entire network is connected, excess supply means that 

the sum of all capacities of all source nodes is strictly greater than the sum of all demands 

of all destination nodes. Similarly for disconnected subnetworks, excess supply means 

the sum of all capacities of all source nodes in a subnetwork is strictly greater than the 

sum of all demands from all destination nodes in that subnetwork. Without excess supply, 

the situation in the previous proposition could occur. 

Incentive is defined to mean that the cost to transport resources over a network 

from a source node to a destination node is less than the penalty cost for failing to fulfill 

demand at a destination node. Incentive assumes that a demand exists for a resource at a 

destination node. When incentive exists, the optimal solution will transport resources 

from source to destination because the cost of doing so is less than the penalty for not 

doing so. If incentive does not exist, then no reason to improve a network to transport 

supply to demand exists either.  

Proposition 2–4: New edges must have an incentive to be built in order to be considered 

as defenses in an IE algorithm. 

Proof of proposition 2–4. Assume to the contrary that edges did not need to have 

incentive to be considered in IE. For example, Figure 11 shows a supply node with more 

resources than demanded at nodes 2 and 3. The edge that connects nodes 1 and 2 has a 

cost less than the demand, so an incentive exists for resources to be transported to node 2. 

But, the new edge that connects nodes 2 and 3 would create a path from node 1 to node 3 

that would have a traversal cost of eight units, which is more than the penalty of five 

units for not satisfying demand at node 3. In this bizarre case, the optimal solution would 

be for the resource to remain at the supply node and not travel to demand node 3, because 

it would cost more to transport the resource than to leave the destination unsatisfied. 

Optimally, edge (2, 3) would not be added to the network. The situation in Figure 11 can 

be avoided if the maximum cost of any acyclic path with new edges between source and 

destination nodes is less than the penalty at a destination node. If all edges have a unit 

cost, then the graph theoretic measure of “distance” between source and destination must 

be less than the penalty for failing to fulfill demand (Chartrand & Zhang, 2012, p. 15).▪ 
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Figure 11.  No Incentive Exists for New Edge to Demand Node 

For the next proposition, consider Figure 12. Figure 12 contains three 

subnetworks that are each connected with existing edges. Subnetwork A only has demand 

nodes without any supply, so unmet demand exists. Subnetwork B has supply and 

demand nodes, but no excess supply exists. Subnetwork C has supply and demand nodes, 

and there is more supply available than demand. The interconnection edges between the 

subnetworks that are shown by the dashed lines between nodes 1 and 2 and 3 and 4 do 

not currently exist, but could be added as extra defenses. The penalty for unmet demand 

is significantly higher than the cost of transporting resources over the longest possible 

path that could interconnect any source and destination node across subnetworks. There 

is sufficient defense budget to add both new edges. Subnetwork A is a connected, but it 

penalizes the overall network objective function because of unmet demand. Subnetwork 

B is connected, and there is enough supply to satisfy demand, but nothing in excess. 

Subnetwork C is connected, and there is significant excess supply. 

 

Figure 12.  Disconnected Subnetworks with Unbuilt Connecting Edges 

Proposition 2–5: Source nodes must have excess supply and new edges must have 

incentive in order to consider the incremental addition of new edges individually in an 

enumeration strategy. 
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Proof of proposition 2–5: Proof by counterexample. Assume to the contrary that 

network source nodes did not need to have excess supply and new edges did not needed 

incentive and consider Figure 12. Suppose new edges were considered as network 

defenses individually for addition. In the first round of selecting defenses incrementally, 

new edge (1, 2) would not be added to the network because adding it alone does not have 

an effect on the network. Incentive exists for resources to travel to subnetwork A over 

edge (1, 2), but no extra resources exist in subnetwork B to utilize the new edge (1, 2). 

The lack of excess supply in subnetwork B would mean that if edge (1, 2) was utilized, 

then penalties would be incurred in subnetwork B to satisfy unmet demand in subnetwork 

A. The travel cost of resources over new edge (1, 2) would make the addition of edge (1, 

2) by itself a suboptimal solution. Also in the first round of selecting defenses, new edge 

(3, 4) would not be added to the network by itself because it would have no effect either. 

Excess supply exists in subnetwork C, but no incentive exists over edge (3, 4) for the 

extra resources to only travel to subnetwork B. All demand in subnetwork B is already 

satisfied. In the second round of selecting defenses incrementally, edges (1, 2) and (3, 4) 

again would be considered individually and neither would be added for the same reasons 

as in the first round. The contradiction occurs because the optimal solution would be to 

add both edges to the network so that the excess supply in subnetwork C could travel 

over both new edges to satisfy the unmet demand in subnetwork A. Adding both edges 

simultaneously is optimal because the high penalty cost for unmet demand creates 

incentive for the excess supply in network C to be able to reach the unmet demand in 

subnetwork A. Since the optimal solution is a contradiction, the proposition must be true. 

Excess supply does not exist in subnetwork B and that makes the addition of either new 

edge appear to be inconsequential when they are considered individually. 

The result from the example in Figure 12 is that when disconnected excess supply 

components and disconnected excess demand components are involved in a network, an 

incremental approach to enumeration can only be considered when a maximum distance 

of one potential edge can exist to connect the components. Figure 12 proves that if there 

are intermediate connections between excess supply subnetworks and unmet demand 
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subnetworks, then an incremental approach toward adding new edge defenses will not 

work. 

The situation in Figure 12 could be avoided in at least two different ways. First, if 

the entire network was connected with other existing edges, then the situation would not 

arise. Second, if the source nodes in subnetwork B had excess supply, then incremental 

addition would be possible. Then, the new edge (1, 2) would be added to the network in 

the first round of enumeration. If the excess supply in subnetwork B was not enough to 

completely satisfy the unmet demand in subnetwork A, then the second round of 

enumeration would add the new edge (3, 4) to the network. 

3. New-Edge Pruning Rule 

Based on the propositions encountered in the previous sections, it is possible to 

write a pruning rule for new edges that could be added to a network as defenses. But, the 

analyst must ensure that a network meets the criteria specified in the rule. The analyst 

must ensure the network has source nodes with excess supply and that incentive can 

occur over new edges that could be added to the network. 

Proposition 2–6 (Pruning rule for new edge defenses): Consider a network where new 

edges do not connect to transshipment nodes. If source nodes in the network have excess 

supply and new edges have an incentive to be added, then new edges considered in DAD 

IE must result in some type of improvement to the resulting system. Under these 

conditions, a new edge branch should be excluded from consideration at a particular 

node in a DAD network IE tree if it does not either change the worst-case attack or 

improve the system objective function value. 

Proof of Proposition 2–6: Consider an arbitrary network of excess supply source 

nodes, edges, potential new edges, and destination nodes where source nodes have excess 

supply. Additionally, no new edges connect to transshipment nodes. An improvement to 

the network objective function will occur if resources can travel more efficiently from 

source to destination with the addition of the edge. In order for the new edge to impact 

the network, resources must be able utilize the new edge. We must determine if excess 

resources can reach the new edge addition. There are two cases to consider for the new 
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edge, either a path exists from an excess supply source node to a node that connects to the 

new edge, or a path does not exist. 

Case 1, a path exists: Since we assume all source nodes have excess supply, then 

at least one source node has a path to at least one node that is connected to the new edge. 

At least one source node will be able to push its extra resources to one of the nodes on the 

end of the new edge. The node at the end of the new edge effectively becomes the 

equivalent of a new supply node because excess resources from the source node would be 

able to flow to it. The extra resources at the equivalent supply node are able to flow over 

the new edge to improve network objective function, or change a worst-case attack. 

Every new edge considered for inclusion will always behave like a source to source edge 

or a source to destination edge since we assume excess supply can reach the new edge. 

Since we assume no transshipment node at either end of the new edge, there is potential 

incentive for resource to flow on the new edge if it is added to the network. If the other 

end of the new edge is a destination node that already has its demand satisfied, the 

addition of the new edge may allow for a more efficient way to satisfy that demand, 

which would improve the system objective function. If the other end of the new edge is 

another source node, the new edge would create an equivalent “super source” node with 

combined resources that might result in more efficient flows. The improved efficiency of 

the system would be a reason to include the new edge in an enumeration tree. If the new 

edge does not provide a more efficient path to satisfy demand, then the addition of the 

new edge could be considered a waste and be pruned from the IE tree. 

Figure 13 shows an example of the potential effects of excess supply source 

nodes. If source nodes 1 and 2 both have excess supply, then they will be able to deliver 

extra resources to the ends of the new edge (4, 6). Source node 1 will be able to turn node 

6 into an equivalent source node since more than one resource can reach node 6. 

Likewise, source node 2 will be able to turn node 4 into an equivalent source node. 
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Figure 13.  Equivalent Effect of Excess Supply Source Nodes 

Figure 14 extends the example against an attack. Recall the optimal attack on this 

network was edge (1, 3), which cut off nodes 3, 5, and 6. That attack would not allow 

node 1 to move any excess supply anywhere. But, the excess supply of node 2 would turn 

node 4 into an equivalent supply node. Then, the inclusion of edge (4, 6) would restore 

flow because the equivalent supply node 4 would be able to send resources across edge 

(4, 6) to satisfy some or all of the previously cut off demand, depending on the amount of 

excess supply. 

 

Figure 14.  Attack with Excess Supply Source Nodes 

Case 2, no path exists: If no excess supply source node has a path to either end of 

a new edge, then it would be impossible for any resources to flow to either end of the 

new edge. Consequently, no resources would be able to flow across that new edge if it 

was added to the network. In this case, the new edge would not serve any purpose in 

improving the efficient flow of resources within the system, and this new edge also 
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would not provide a reason for the worst-case attack to change. The addition of a new 

edge that cannot have flow would be a waste of a resource, and it could be pruned from 

an IE tree. Case 2 is illustrated in Figure 15, where excess supply node 1 does not have a 

path to the new edge between destination nodes 3 and 4. The branch representing the 

addition of edge (3, 4) could be pruned from the tree.▪ 

 

Figure 15.  New Edge Unreachable by Excess Supply Source Nodes 

4. Examples of New Edge Pruning 

Since Proposition 2–6 provides us a rule to prune new edges in IE when the 

network has excess supply and incentive exists over new edges, we can examine some 

instances where pruning of a new edge may or may not occur. 

Observation 2–7: If new edges do not connect to transshipment nodes, then the only 

possible types of new edges are source to source, source to destination or destination to 

destination. 

New edges that connect source nodes to source nodes create a super supply node. 

The super supply node may be able to use the combined supply from both nodes to 

deliver resources to portions of the network that were previously unsatisfied. New edges 

that connect destination nodes to destination nodes create the equivalent of a super 

demand node, which would behave like a destination node with a much higher resource 

requirement. Behavior of super supply and super demand nodes in a network with excess 

supply can be easily seen by modifying a previous example to have excess supply. 

Consider Figure 16, with the worst-case attack shown. In Figure 16, the addition of edge 

(4, 6) creates an equivalent super demand of edges 3,4,5,6 to supply node 2. Since source 
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node 2 has excess supply, the addition of edge (4, 6) would be considered in the first 

layer of IE. But, even though node 2 has excess supply, it does not completely satisfy the 

demand. The second layer of enumeration to add the second defense would consider the 

addition of edge (1, 2) to the network which creates the equivalent of a super supply 

node. The new edge (1, 2) is added to the enumeration algorithm because an incentive 

exists somewhere in the network, specifically, the unsatisfied demand from node 3 that 

could exist on the path (1, 2, 4, 6, 5, 3). Since incentive exists, the edge (1, 2) is added to 

the network. 

 

Figure 16.  Worst-case Attack with Excess Supply Nodes 

The source to destination edge is the last type of new edges that may be added to 

a network. There are two possibilities for new edges with source to destination nodes. 

Possibility 1: The new edge is source to destination with previously unsatisfied 

demand. It should be obvious that addition of this new edge could improve the objective 

function value since the source node has extra resources available to send on the new 

edge to a destination that was previously penalizing the objective function for having 

unfulfilled demand. If the cost to transport between source and destination is higher than 

the penalty for unfulfilled demand, then incentive would not exist. 

Possibility 2: Source to destination with previously satisfied demand. There are 

four types of situations that could occur. 
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Situation 2a: If the cost of moving resources to the destination node can be 

improved by adding the new edge to the network, then that new edge would be a 

candidate for addition. 

Situation 2b: If the resource that is already satisfying the demand at the 

destination could be better utilized by satisfying some other demand on the network, then 

addition of the new edge will be an improvement and a candidate for addition.  

Situation 2c: If the addition of the new edge does not change the movement of 

previous resources, then does the satisfied destination node appear to be the equivalent to 

a super supply node with the addition of this new edge? The satisfied demand node could 

look like an equivalent supply node if there is another existing incentive in the network 

for the edge to be added. While the satisfied demand node itself may not present an 

incentive for the edge to be added, there may be another efficiency in a different part of 

the network that will make the satisfied demand node appear to be the equivalent of 

another supply node. 

Situation 2d: If the addition of the new edge does not change the movement of 

resources and there is no other existing incentive in the network for the edge to be added, 

then the candidate edge will not affect a change in the efficiency of the network nor 

change the worst-case attack. This new edge should be temporarily excluded from 

consideration in an IE algorithm. 

In order to illustrate how new edge pruning works on the test network, consider 

Figure 17. Figure 17 is a portion of the IE tree on the test network with a defense budget 

of four units and an attack budget of one unit. The black arrows in Figure 17 show the 

defenses that could be pruned from the tree. The new edges labeled for pruning have the 

exact same worst-case attack and objective function value as the parent node. In this case, 

these defenses do not make any improvement to the function of the system, in terms of 

system cost or worst-case attack. These potential defenses are ruled to be a waste of 

defenses since improvement in objective or change in worst-case attack did not occur, 

and can therefore be pruned from the tree. These edges will be reconsidered as additional 

defenses in different child nodes later on as the IE strategy continues. 
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Figure 17.  Pruning New Edges in an IE Tree 

E. UPPER AND LOWER BOUNDS IN IE 

As the IE tree is explored, we can update the upper bound on the overall DAD 

problem solution when each node AD subproblem instance is solved. Every node 

represents an AD subproblem instance that is a feasible solution to the master DAD 

problem instance. Each time a feasible solution is computed, it can be compared to the 

best known feasible solution found on the tree so far. If the new node AD subproblem 

objective function value is better than the best known objective function value, then the 

upper bound on the master DAD problem can be updated. By updating the upper bound 

on the DAD problem with each new node, the best known solution can be retrieved at 

any point during the execution of the algorithm. 

A simple global lower bound for the DAD problem can also be computed. 

Consider a different restriction to the DAD problem, where instead of manipulating the 

defense budget, we instead choose to fix the attack budget. If the attack budget is fixed at 
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zero units, then we reduce a tri-level optimization problem to a different bi-level 

optimization problem. When there are zero attacks to consider, we have reduced the 

DAD problem to a “defender-operator” or “defender-defender” (DD) problem. The DD 

problem is also recognized as an example of the well-known network design problem 

(Magnanti & Wong, 1984). The DD problem is a mixed integer linear program since the 

only objective is minimization, as the attack variables are all fixed to zero. 

(W)

ˆmin min ( , , )
W Y

f W X Y
    (2.2) 

The formulation in Equation (2) is simply a restatement of the original DAD 

formulation (1a), except that all of the attack variables (X) have fixed values of zero. The 

formulation of the DD minimum cost flow problem has all attack variables (X) fixed at 

zero, and removed from the problem. The system of Equations of (2.2a-h) are modified 

from the original DAD minimum cost flow model in Chapter I, with all of the attack 

variables removed from the formulation. 

 
Defender-Defender (DD) Minimum Cost Flow Formulation: 
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The global lower bound obtained from the DD subproblem instance has limited 

use. The global lower bound represents the best operation of the system that a defender 
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could possibly experience when choosing defenses, since no attacks occur. The global 

lower bound provided by the DD subproblem gives the analyst a best case standard to 

measure the effectiveness of the best defenses against a worst-case attack. Calculation of 

the global lower bound is not required to produce an IE tree. 

A simple example of updating the bounds can be seen in Figure 18, a DAD 

problem instance of the test network with a defense budget of three units and an attack 

budget of two units. First, the DD network design subproblem instance of no attacks 

gives us a global lower bound of 22 units. We know that no feasible solution of the DAD 

problem instance can be less than 22 units. Next, the root node AD subproblem instance 

of no fixed defenses gives an objective function value of 62 units, which becomes our 

initial upper bound. The first AD subproblem instance at tree depth of one gives an 

objective function value of 50 units, which updates the upper bound. The second 

subproblem instance at depth of one gives an objective function value of 54 units. But, 

this value is not an improvement over the previous best known value, so the upper bound 

is not updated. The next AD subproblem instance node at depth one has an objective 

function value of 45 units, which updates the upper bound. The remainder of the tree is 

not shown in Figure 18 and 45 units is the optimal solution found at multiple nodes. 

 

Figure 18.  Upper and Lower Bounds in an IE Tree 
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F. IMPLICIT ENUMERATION ALGORITHM 

The IE algorithm for the DAD problem has been implemented in the Python 

programming language with external calls to GAMS optimization software with the IBM 

CPLEX solver. We present the pseudo-code of IE to explain our algorithm in detail. Our 

algorithm builds and traverses the IE tree using a breadth first search strategy, and can be 

modified for other strategies. 

Main routine: 
Inputs:  

Network (supply nodes, destination nodes and costs & capacities of edges). 
 Defense budget and attack budget for DAD problem instance. 

Set of new edges that can be added to the network satisfying three tests: 
New edges may not connect to transshipment nodes. 
Source nodes must have excess supply. 
Incentive must exist for new edge to be added to network. 

Outputs: 
DAD solution(s) = Best node(s) objective function value. 
DAD defense plan(s) = Inclusion list(s) with best objective function value. 
DAD attack plan(s) = Attack plan(s) of node(s) with best objective function value. 

Algorithm: 
 Solve AD subproblem with zero defense budget for root node. 

Build tree with breadth first search strategy: 
Relax defense budget by one defense to increase depth of tree. 
While current depth ≤ defense budget: 

For each node in breadth of depth: 
Make children with parent node data. 

  Relax defense budget by one defense to increase depth of tree.  
 
Note: Multiple defense and/or attack plans may exist at optimal DAD solution value. 
 
Make children subroutine: 
Input: Parent node data (inclusion list, defense budget remaining, attack plan). 
Output: All child nodes with all calculations performed. 
Algorithm: 
 Two options to create child nodes: 

(First option: make children by defending attacked edges of parent node.) 
If defense budget remaining at current node ≥ edge defense cost: 

For every edge in current node attack plan: 
Add new child node to IE tree. 
Create node exclusion list with make exclusions. 
Inclusion list = inclusion list of parent node + edge. 
If inclusion list is in node exclusion list: 

Delete new node and new inclusion list. 
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If inclusion list not in node exclusion list: 
Solve AD subproblem for new node. 
Update upper bound with update solution. 
Set parent node of new node. 
Add new node to list of children of parent node. 
Decrease budget remaining at new node by cost of defense. 

(Second option: Make children of current node by adding new edges to network) 
If defense budget remaining at current node ≥ new edge addition cost: 

If any new edge in parent node inclusion list OR in parent node exclusion list: 
Delete edge from list of new edges. 

For each new edge in list of new edges make a candidate node: 
Candidate inclusion list = parent node inclusion list + new edge. 
Solve AD subproblem for candidate node. 
If candidate objective function value < parent objective function value OR  
If candidate attack plan is different than parent node attack plan:  

Candidate node is added as a new child node to IE tree. 
Create node exclusions with make exclusions. 
Add a new branch from parent node with label of new edge. 
Update upper bound with update solution. 
Decrease budget remaining of new node by cost of adding edge. 

 
Make exclusions subroutine: 
Input: Exclusion list of parent node. 
Output: Exclusion list of child node. 
Algorithm: 

Set child node exclusion list to parent node exclusion list 
For each currently existing branch of parent node: 

Add edge label of branch to current node exclusion list. 
 
Update solutions subroutine: 
Inputs:  

Best known objective function value.  
List of tree node locations of the best known value. 
Current node objective function value. 

Outputs:  
Best known objective function value.  
List of node locations with that value. 

Algorithm: 
If current node objective function value is better than best known value: 

Set best known solution to current node objective function value. 
Set location of best solution to current node depth and breadth. 

If current node objective function value is equal to best known solution: 
Append current node depth and breadth to list of locations of best known value. 
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1. Depth First Search Algorithm Option 

Our IE algorithm is set up for the breadth first search tree exploration. If the 

analyst desires to perform a depth first search tree exploration, then the “build tree” step 

of the master algorithm can be replaced with this alternate version that uses a last in, first 

out stack data structure to explore the tree. Each node also has a new data element we call 

“visited” to check if the node has been visited before. 

 
(Alternate) Build tree with depth first search exploration strategy: 

Push root node to top of stack. 
Root node visited = False. 
While stack is not empty: 

Current node = Pop node from top of stack. 
Current node visited = True. 
If defense budget remaining at current node ≥ defense cost: 

Call “make children” subroutine for current node. 
For each child node of current node: 

Push child node to top of stack. 
Set visit for child node = False. 
 

2. Algorithm Testing and Performance 

The IE algorithm is implemented on the test network. Results were checked 

against results obtained with the DAD problem nested decomposition algorithm and the 

DAD problem dual ILP with decomposition algorithm from Chapter I. Results were 

double checked with the solutions of the DAD problem on the test network found in 

Alderson et al. (2015). Solution times in seconds for DAD problem instances are shown 

for both decomposition algorithms and the IE algorithm in Table 3. 
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Table 3.   Comparison of Solution Times for Different DAD Solution Methods 

Problem Instance  Solution Time (Seconds) Multiple 
Optimal 
Solution 

Defense 
Budget 

Attack 
Budget 

Nested 
Decomposition

Dual ILP + 
Decomposition 

Implicit 
Enumeration 

0 1 4.8 0.7 0.5 NO 
0 2 5.4 0.7 0.4 NO 
0 3 7.5 0.7 0.4 NO 
0 4 4.2 0.8 0.4 NO 
0 5 2.5 0.7 0.4 NO 
1 1 10.0 1.7 0.8 NO 
1 2 11.2 1.8 2.3 NO 
1 3 12.4 2.6 1.6 YES 
1 4 22.1 2.3 2.0 NO 
1 5 12.8 1.4 2.5 NO 
2 1 14.0 2.4 4.9 NO 
2 2 16.8 4.0 5.2 NO 
2 3 48.8 4.3 8.5 NO 
2 4 64.5 8.7 10.5 YES 
2 5 58.0 11.0 13.9 NO 
3 1 11.9 2.7 9.3 NO 
3 2 21.0 2.7 15.0 YES 
3 3 40.1 11.8 35.1 YES 
3 4 110.9 14.3 48.5 YES 
3 5 147.4 40.1 58.2 NO 
4 1 13.1 2.0 26.9 YES 
4 2 41.6 6.6 50.4 NO 
4 3 70.2 10.5 121.8 NO 
4 4 156.1 27.8 188.2 NO 
4 5 247.7 61.0 238.3 YES 
5 1 8.1 2.2 58.7 NO 
5 2 51.4 8.7 144.1 YES 
5 3 106.2 22.4 440.7 NO 
5 4 197.4 37.6 554.4 NO 
5 5 322.1 135.9 826.1 YES 

Totals: 1840.2 430.1 2869.9 9 
 

In general, Table 3 shows that the solution speed of the IE algorithm is roughly 

equal to or slightly slower than either decomposition approach for finding an optimal 

solution to the DAD problem on the test network. IE is the fastest algorithm only in the 
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case of zero defense budget. Table 3 shows that all of the algorithms take longer to solve 

a DAD problem instance when the size of the defense budget increases. But, IE becomes 

much slower than either decomposition method when the defense budget is five units. 

However, there is one performance aspect of IE that makes it superior to both 

decomposition solution methods. IE is able to find many multiple optimal solutions at 

once, which is something that the nested decomposition algorithm cannot do. Table 3 

shows the problem instances where multiple equivalent optimal solutions exist. Both 

nested decomposition methods may be faster than IE, but they do not know if multiple 

equivalent optimal solutions exist, and they do not provide equivalent optimal solutions 

either. IE can inform the analyst of equivalent optimal solutions when they exist. If the 

analyst desires to find as many equivalent optimal solutions as possible to a DAD 

problem instance, IE is a good choice. IE also shows the analyst that when multiple 

optimal solutions exist, they need not always occur with a completely utilized defense 

budget. Similarly, an analyst could make a minor modification to the algorithm in order 

to use IE to find all solutions within a fixed percentage of the optimal solution. The 

analyst could specify a percentage of optimality desired for all solutions, and the IE 

algorithm would be able to identify all of these solutions. 

Proposition 2–8: When multiple optimal solutions are possible in a DAD problem 

instance, optimal solutions do not always occur at leaf nodes of the IE tree. 

Proof of proposition 2–8: Proof via counterexample. Assume to the contrary that 

optimal solutions can only occur at leaf nodes in an IE tree. Consider the test network 

with a defense budget of three units and an attack budget of two units. The optimal 

solution to the DAD problem is 45 units. There are seven nodes on the IE tree with an 

objective function value of 45, and one of those nodes is not a leaf node. When only one 

defense is fixed by adding edge (3, 8), the optimal objective function value is 45 units, 

but the defense budget is not exhausted. The worst-case attack are edges (10, 13) and (11, 

15). As it turns out, defending each of these attacked edges one at a time will create child 

nodes with defenses of (3, 8) with (10,13) and (3,8) with (11, 15). Both of these child 

nodes also result in optimal objective function values of 45 units. These child nodes are 

not pruned from the tree because the worst-case attack changes from parent node to child 
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node. In this case, the parent and child nodes in a subtree all share the same optimal 

objective function value. Figure 19 shows the multiple optimal solutions from a test 

network instance as green nodes. Thus, it is proven via counterexample that optimal 

solutions need not only exist at leaf nodes of an IE tree.▪ 

 

Figure 19.  IE Tree with Multiple Optimal Solutions 

G. ENUMERATION SUMMARY AND CONCLUSIONS 

The IE algorithm works by restricting and subsequently relaxing the defense 

budget of the original tri-level DAD problem in order to generate easier to calculate bi-

level AD sub problems that can help us find all reasonable choices of defenses. The 

restriction of the problem is performed by fixing the values of the defense variables ( Ŵ ) 

one at a time. At the root node, the defender is restricted in having zero defense budget, 

which is the initial AD sub problem. At the first level of depth, the restriction of the root 

node problem is eased slightly because the defender is allowed one defense. At depth one 
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in the IE tree, the defender can choose only one defense that either improves the objective 

function or changes the worst-case attack of the parent node AD sub problem. This rule 

for node development at the next depth effectively prunes all other possible defenses that 

would be suboptimal. In this manner, explicit enumeration is avoided because all possible 

choices of defenses are not calculated in the tree. All of the AD subproblem instances in 

the IE tree are also easier to calculate than the original DAD problem instance. The 

methodology of preventing repeat calculations also helps to prune repeat calculations 

from the enumeration tree. The process of slight easing of the restriction on fixing the 

defense variables will continue throughout the formation of the IE tree until the defense 

budget is exhausted. Additionally, the formation of each new node performs a check for 

the updating of the best known feasible solution. This feature allows the analyst to be 

able to pause the algorithm and get the best known feasible solution at any time. 

Proposition 2–9: The IE algorithm is an exact algorithm that produces an optimal 

solution to a DAD problem instance. If the IE tree is completely explored, then one or 

more equivalent optimal solutions will be found to the DAD problem instance. 

Proof of proposition 2–9: An enumeration strategy lists all possible solutions to a 

problem instance. IE discards feasible combinations of decision variables that cannot lead 

to an optimal solution. In our implementation of IE for a DAD problem instance, we 

compute only those feasible combinations of defenses to worst-case attacks that can 

improve the objective function value or change the worst-case attack from a previous AD 

subproblem instance. The complete IE tree will list all feasible combinations of defenses 

that can either improve the objective function value or change worst-case attacks. The 

combinations of defenses that do not do either of those two things cannot lead to an 

optimal solution to the DAD problem instance. If the tree exploration is prematurely 

halted before completing the IE algorithm, an optimal solution might be found, but it also 

may exist in a portion of the tree that had not yet been completely explored.▪ 

However, IE does have a shortcoming. The size of an enumeration tree depends 

on the magnitude of the defense and attack budgets, the costs of defenses and attacks to 

those budgets, and the cardinality of the set of new edges that may be added to the 

network. The depth of the tree is equal to the number of defenses selected in AD sub 
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problems. The breadth of the tree at any particular depth depends upon the number of 

attacks permitted by the attacker budget and the cardinality of the set of new edges. Thus, 

the shortcoming of IE is that the tree size can become incredibly large when either the 

defense budget, attack budget, or number of network design elements becomes large. 

In the case where there are no new edges that can be added to the network, the 

maximum size of the tree is straightforward to compute. The breadth of each level of the 

tree is the number of attacks raised to the exponent of the level of the tree. Thus, with 

three defenses and two attacks, the maximum size of the tree is 15 nodes. The maximum 

size is computed as follows: level zero consists of 20=1 node; level one has 21=2 nodes; 

level two has 22=4 nodes; level three contains 23=8 nodes. The maximum number of 

enumeration nodes in this tree is sum of all levels, 20 +21+22+ 23 = 15 nodes. The tree 

gets really big fast. If there were 5 attacks and 5 defenses, the maximum number of 

enumeration nodes would be 50+51+52+53+54+55 = 3906 enumeration nodes, each 

containing an AD mixed integer program (MIP) subproblem. However, the maximum 

size of the tree is not the actual size of the tree when exclusion lists are used to prevent 

repeated calculations. Nevertheless, we observe the problematic issue with IE is the 

number of MIPs to solve grows exponentially with the number of defenses allowed by 

the defense budget. Adding new edges into consideration makes the maximum number of 

nodes even larger. 

IE may not always be the fastest way to the optimal solution to a DAD problem 

instance, but this approach does have the unique capability of quickly identifying 

multiple optimal solutions. If an analyst needs to consider all equivalent optimal solutions 

in order to make a list of defenses to choose, IE may be a good choice. 
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III. NESTED DEFENSES IN THE DAD PROBLEM 

A. INTRODUCTION 

When faced with uncertain budgets and pressure to make good decisions quickly 

after defense budgets become known, military and civilian decision makers sometimes 

make use of a prioritized list of assets to defend in a system. Given a prioritized list and a 

realization of defense budget uncertainty, a decision maker may be inclined to choose to 

defend as many items from the top of the prioritized list downwards as he or she can 

afford. Prioritized lists can simplify decision making in uncertain budget environments, 

but this simplicity comes at the cost of optimality. Requiring the set of defenses to be 

presented as a prioritized list is equivalent to requiring monotonicity on the sets of 

defended assets as budgets increase. 

Uncertain budgets can refer to either an unknown defense budget, or an unknown 

attack budget of an adversary, or both. In the unknown defense budget scenario, decisions 

about which defenses to make to a system may need to be finalized before a defense 

budget is known. In the unknown attack budget situation, the defenders of a system may 

have to choose their defenses without any intelligence about the expected number of 

enemy attacks on a system. In the circumstance of complete budget uncertainty, the 

analyst knows nothing about the defense budget and the budget of their attacking enemy, 

but he or she must prioritize which defenses are best for a system. 

A nested defense means that for any pair of defender-attacker-defender (DAD) 

problem instances with different defense and/or attack budgets that the defense chosen 

with the smaller budget is a subset of the defenses chosen for a larger budget (Nehme & 

Morton, 2010). Nested defenses are a monotonic sequence of sets. A closely related term 

is “prioritization’, which is defined as the process of arranging choices in a list by their 

priority. In the context of the DAD problem, prioritization of defenses is the ability to 

rank the relative ability of each different defense to positively affect the objective 

function value against a worst-case attack. Koc and Morton state, “prioritization involves 

optimally placing activities into a priority list before the uncertainty is revealed, and, after 
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realizing the uncertainty, making an activity selection consistent with the priority list” 

(2015, p. 587). An example of a nested defense is a prioritized list of the best defense 

against any attack, second best defense, and so on. In the real-world problem of 

infrastructure defense, prioritization is a logical choice for planning against a wide range 

of possible defense and attack scenarios. “Prioritization is of interest when some problem 

parameters are random and we must commit to a ranking of the activities before these 

parameters are realized” (Koc & Morton, 2015, p. 586). 

Ranking the relative importance of defenses of a network into a prioritized list 

may seem to be a natural method for planning to defend a system when faced with 

uncertain budgets, but it is not optimal most of the time. Savage et al. (2006) refer to the 

suboptimal nature of prioritized lists as the “risk of ranking.” The authors note that “It is 

common when choosing a portfolio of capital investment projects to rank them from best 

to worst, then start at the top of the list and go down until the budget is exhausted. This 

flies in the face of modern portfolio theory which is based on the interdependence of 

investments” (2006, p. 22). In the case of the DAD problem, the choice of defenses 

represents the capital improvement projects mentioned by these authors. A prioritized list 

can simplify decision making, but it can lead to a suboptimal solution for any particular 

budget chosen. It is often the case that the one best defense of a system is not included in 

the set of the two best defenses, and so on. Brown, Carlyle, Salmeron and Wood. found 

that “a prioritized list of defended assets has a serious flaw… Such a list creates a 

“preferred set” of “n+1” assets by adding one asset to the preferred size “n’. But, we 

know that an optimal set of size “n” and an optimal set of size “n+1” may have nothing 

in common” (2006, p. 531). 

While it is known that nested defenses are often suboptimal solutions, an 

abundance of research on the impacts of requiring nested defenses for bi-level DA 

models or tri-level DAD models does not exist. “In spite of its common use in practice, 

prioritization has received little attention in the academic literature.” (Koc & Morton, 

2015, p. 587). One discovery is that the requirements for a naturally occurring nested 

defense in an optimization problem have been determined. Nehme and Morton show “the 

nestedness property hinges on supermodularity of the objective function and 
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submodularity of the [constraints]” (2010, sec. 3). However, these authors also conclude 

that many real-world problems do not exhibit these qualities. 

DAD models that include nested defenses with uncertain budget levels is a 

parametric programming problem. Bertsimas and Tsitsiklis describe parametric 

programming as a systematic procedure for obtaining objective function values for all 

values of a parameter (1997, p. 218). As a parametric programming problem, our DAD 

model places the uncertain parameter on the right hand side of the defense and/or attack 

budget constraints. When the defense and/or attack budget is uncertain, the analyst takes 

into account the entire range of budget scenarios in order to find a solution that contains 

common defenses. 

This chapter examines how much of an impact to optimality is incurred when 

nested defenses are required in a DAD problem instance with unknown defense and/or 

attack budgets. This chapter does not consider the idea of nested attacks by an adversary. 

We compare nested defense solutions against the optimal defense solutions to DAD 

problem instances in order to measure the effects of nesting. We use the DAD minimum 

cost flow problem formulation as well as the network of Alderson et al. (2015) described 

in Chapter I to illustrate nested defenses. Procedures to obtain optimal solutions to DAD 

minimum cost flow problem instances were displayed in Chapter I. In Figure 20, we plot 

the optimal solutions to the test network DAD problem for different defense and attack 

budgets. Figure 20, graph ‘a’ depicts the set of optimal solutions of the DAD problem 

instances for the test network by varying the defense and attack budgets on two axes, and 

displaying the corresponding optimal objective function value on the third axis. Each 

green star represents a DAD problem instance of a specific defense budget and attack 

budget. The optimal objective function values for DAD problem instances are a set of 

discrete points, since fractional values for defense budgets and attack budgets are 

meaningless. Figure 20, graph ’b’ depicts objective function value points connected with 

line segments. The line segments are for the illustrative purpose of enhancing the three 

dimensional effect of the plot, and are not meant to imply the existence of a continuous 

surface. 
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(a) Test Network Optimal Solutions (b) Optimal Solutions and Connecting Lines 

Figure 20.  Three Dimensional Plots of Test Network Optimal Solutions 

B. IMPLEMENTATION OF NESTED DEFENSES 

In order to implement nesting of defenses, a new set has to be introduced that 

represents budget scenarios. Budget scenarios allow for a parametric analysis of varying 

one or both budgets in the DAD model. We use omega to define a specific budget 

scenario (ω) and the set of all budget scenarios (Ω). The decision variables must carry a 

new superscript that identifies the budget scenario. 

 

Additional Sets: 

  Parameterized unknown budget scenarios 
 

There are at least two ways to incorporate the requirement for nested defenses in 

the DAD model. We investigate both approaches. The first method uses a block of 

constraints to force the defenses utilized in one budget scenario into the next scenario 

with a different value for the defense and/or attack budgets. The second method is to 

solve each problem instance separately in the order of the nesting strategy. We fix some 

of the defense variable values (W) from the previous problem instance for the next 

problem instance. We use the hat symbol (^) for a defense variable with a fixed value. 
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1. Nesting as Constraint Equations 

Implementation of nesting constraints in a parametric linear program allows us to 

examine all budget scenarios simultaneously. A new problem formulation objective 

function includes summation over all of the budget scenarios. The formulation of the 

DAD minimum cost flow problem is similar, but it now includes the new budget scenario 

superscript on all of the decision variables and budget data. There is a new constraint at 

the end of the formulation that depends upon the type of nesting strategy used. If the 

nesting strategy begins at the minimum budget, then Inequality (3.1a) is used. If the 

nesting strategy begins with maximum budget, then Inequality (3.1b) is used. If the 

nesting strategy begins at an intermediate budget, then a feasible combination of 

Inequalities (3.1a) and (3.1b) are used. 

 

Nesting Constraints 

1      ( , ) , , .ijd ijdW W i j E d D         (3.1a) 
1      ( , ) , , .ijd ijdW W i j E d D         (3.1b) 

 

2. Nesting by Fixing Variables 

A second method to implement nesting of defenses is to “fix” some of the defense 

variables to one or zero, depending on the starting instance of the nesting algorithm. We 

start with one DAD problem scenario of a specific defense and attack budget and solve it 

optimally. Next, take the defenses from the original instance as fixed values to a second 

DAD problem instance with the parameterized budget varied by one unit. Solve the 

second instance with the additional constraint optimally to obtain defenses in the second 

instance that are also in the first problem instance. This process repeats until all possible 

budget scenarios are solved and nested defenses are obtained. Some of the defense 

decision variables (W) change to fixed values (Ŵ ), depending on the direction of the 

nesting strategy being used. Each budget scenario problem instance must be solved, one 

at a time, in the order of the nesting strategy. 
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a. Nesting Rule for Scenarios with Increasing Budgets

First, the optimal solution for the starting point budget scenario is obtained. The 

optimal solution of the next budget scenario must contain all of the defenses chosen in 

the previous problem instance, and it may include another defense if an increase in 

defense budget permits another defense. The defenses chosen (W) are changed from 

decision variables into fixed values of one. Next, a new problem instance is formed with 

the next scenario of increased defense and/or attack budgets. Nesting defenses under 

increasing budget scenarios can be called “fixing defenses to one” since as defenses are 

chosen in smaller budget scenarios, the value of their decision variable is fixed to one for 

larger budget scenarios. Equation (3.1c) summarizes the fixing of defense variables when 

a nesting strategy increases budgets.  

1ˆ 1           : 1.ijd ijd ijdW W W       (3.1c)

b. Nesting Rule for Scenarios with Decreasing Defense Budgets

We start with the optimal solution to a DAD instance with a maximum defense 

and/or attack budget. The next problem instance has a reduction in the defense budget, 

attack budget, or both. In the next budget scenario, we fix all defense variables that are 

not selected as a part of the solution of the previous problem instance to zero. Thus, the 

only defense variables that can vary in the next problem instance budget scenario are 

those defense variables associated with the defenses that were chosen in the previous 

problem instance. The optimal solution to the new problem instance is determined, and 

the resulting defenses from that solution will be a subset of the defenses chosen from the 

starting problem instance. Nesting defenses under decreasing budget scenarios can be 

called “fixing defenses to zero” since defenses not chosen in larger budget scenarios 

cannot be chosen in smaller budget scenarios. Equation (3.1d) summarizes the fixing of 

defenses when a nesting strategy decreases budgets. 

1ˆ 0           : 0.ijd ijd ijdW W W       (3.1d)
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C. NESTED DEFENSE HEURISTIC APPROACH 

A straightforward approach to constructing a nested defense to a parameterized 

DAD problem instance is to use the fixed variable approach. We define this 

straightforward approach to constructing nested defenses as the “nested defense myopic 

greedy heuristic.” This process of obtaining nested defenses can be defined as a heuristic 

approach because there is no way of knowing if the nested defenses obtained by this 

process are the best nested defenses that the network could have. Furthermore, this 

process can be defined as a greedy heuristic because choosing the next defense variable 

to nest in the overall defense involves making the best possible improvement to the DAD 

problem instance with the inclusion of the nesting constraint (Rardin, 1998, p. 699). The 

process can also be characterized as myopic because it focuses on only one problem 

instance at a time, and it does not consider all possible budget scenarios at once. We 

present pseudo-code of a simple algorithm to implement the nested defense myopic 

greedy heuristic. 

Nested Defense Myopic Greedy Heuristic Algorithm 

Inputs: DAD problem instance network with a parameterized budget 
Outputs: Nested defenses and objective function values for all budget scenarios 
Algorithm: 
Current budget scenario = starting point problem instance 
Nested defense list = empty 
Solve DAD problem optimally for starting point budget scenario 
While unsolved parameterized budget scenarios exist: 

Append defenses from previous instance solution to nested defenses list 
Include nested defenses as a constraint to next DAD problem instance 
Increment budget scenario by varying parameterized budget by one unit 
Solve DAD problem instance for budget scenario 
 

Step two of the algorithm features a choice of how to start the nesting algorithm. 

The starting point of a heuristic nesting algorithm is defined as a DAD problem instance 

for a specific defense budget and attack budget. At the starting point, the DAD problem 

instance is solved without any nesting requirements. From the starting point, new 

problem instances are created by either changing the defense budget, the attack budget, or 

both budgets. The solution of those new problem instances will incorporate the defenses 

found in the prior problem instance in order for the system to have a nested defense. 
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Observation 3–1: A problem instance that is chosen as the starting point for a heuristic 

nesting algorithm has an optimal solution equal to the nested solution. 

The choice of the starting point problem instance of the heuristic nesting 

algorithm can impact the magnitude of the difference between a nested solution and an 

optimal solution for any specific instance of defenses and attacks. For example, a DAD 

problem instance with an unknown defense budget could have at least three different 

starting points. One starting point could be a minimum defense budget and the nesting 

would increase the defense budget for each successive instance. A second starting point 

begins at a maximum defense budget and nesting would decrease the budget for each new 

instance. A third starting point is an intermediate defense budget. Implementation of an 

intermediate budget starting point would begin with the optimal defense at that budget 

level and increment the budget until the maximum is reached and then return to the 

optimal intermediate defense and decrease budgets until the minimum is reached. 

As the defense and/or attack budget varies, the potential exists for a difference to 

grow between the nested defense solution and the optimal solution for different budget 

scenarios. The choice of the starting point instance has different implications for how the 

nested solution compares to the optimal solution over all possible defense and attack 

budgets. For example, consider the DAD problem on the test network where the defense 

budget is unknown, but the attack budget is fixed at three units. Table 4 summarizes the 

objective function values for nesting defenses from starting points of zero defense 

budget, maximum defense budget, and midrange defense budget. The optimal solution 

for each number of defenses is shaded green. Table 4 shows that the starting point 

instance for nesting defenses can result in different objective function values. 

Table 4.   Effect of Defense Budget Starting Point on Nested Defense Solution 

Objective Function Values 
(Attack Budget = 3) 

Defense Budget  
0 1 2 3 4 5 

Optimal Solution (Not Nested) 87 80 64 63 47 41 
Nested Defense: Start at minimum defense budget 87 80 67 64 49 43 
Nested Defense: Start at maximum defense budget 87 87 70 65 47 41 
Nested Defense: Start at midrange defense budget 87 87 64 63 55 47 
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Similarly, different starting points can also result in different nested defenses 

chosen for a particular defense and attack budget scenario. Table 5 shows the edges 

chosen as nested defenses for each different nesting start point and compares them with 

the optimal solution, which is shaded green. Any column in Table 5 shows that the nested 

defenses chosen depend on the starting point instance. 

Table 5.   Effect of Defense Budget Starting Point on Nested Defenses Chosen 

Defenses Chosen 
(Attack Budget = 3) 

Defense Budget  
0 1 2 3 4 5 

Optimal Solution 
(Not Nested) 

None (2, 7) (5,10) (5, 10) 
(10,11) 

(3, 8) 
(10, 11) 
(10, 13) 
 

(3, 8) 
(9, 13) 
(10, 11) 
(10, 13)

Nested Defense:  
Start at minimum 
defense budget 

None (10, 13) (10, 13) 
(7, 8) 

(10, 13) 
(7, 8) 

(10,11) 

(10, 13) 
(7, 8) 

(10, 11) 
(2, 7) 

(10, 13) 
(7, 8) 

(10, 11) 
(2, 7) 
(9, 13) 

Nested Defense:  
Start at maximum 
defense budget 

None None (3, 8) (3, 8) 
(10, 13)

(3, 8) 
(10, 11) 
(10, 13) 

(3, 8) 
(9, 13) 
(10, 11) 
(10, 13)

Nested Defense: 
Start at midrange 
defense budget 

None None (5,10) (5, 10) 
(10, 11)

(5, 10) 
(10, 11) 
(7, 8) 

(5, 10) 
(10, 11) 
(7, 8) 

(10, 13)
 

1. Heuristic Starting Point Assumption 

We assume a nested defense has a starting point scenario that can be computed by 

finding the optimal solution to a DAD problem instance with a known defense and attack 

budget. Heuristic nested defense strategies assume that the first budget scenario will have 

the nested defense equal to the optimal defense. For notation, we will use a star to signify 

the optimal solution to a DAD problem instance. Z* refers to the optimal objective 

function value and W* refers to the optimal defenses chosen for a DAD problem instance 

of a specific defense and attack budget. Equation (3.2) states the myopic greedy heuristic 

starting point scenario assumption. 
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Nested Defense Heuristic Starting Point Scenario Assumption 

 *" 1" " 1" .ijd ijdZ Z    (3.2) 

 

2. Parameterized Defense Budget and Known Attack Budget 

When only the defense budget is subjected to parametric analysis, we assume that 

the attack budget is known. This situation occurs when the defender does not know the 

defense budget, but must decide on the defenses for the system. The defense budget is 

revealed after defense decisions are made. The defender must make a prioritized list of 

the best defenses for the system. The defender chooses a starting point budget scenario 

for heuristic nesting of prioritized defenses. The starting point instance could be 

minimum defense budget, maximum defense budget, or somewhere in between. 

Figure 21 shows how the objective function value of heuristic nested defenses 

compares with the optimal objective function values for the test network. Figure 21 gives 

the ability to visualize the effect of nested defenses in comparison to optimal defenses. 

Problem instance budget scenarios are displayed on two axes, and objective function 

value is the third axis. The corresponding objective function values are of the nested 

defense and optimal defense are graphed as pairs of different points. The distance 

between each pair of points gives the analyst a way to show a decision maker that nesting 

defenses appears different than the optimal defense in terms of overall system cost. 

In Figure 21, the attack budget is held constant while the defense budget is 

allowed to vary from three different starting points. The first graph starts at zero defense 

budget and increases the defense budget one unit at a time. The second graph starts at the 

maximum defense budget of five units and decreases the defense budget by one unit. The 

third graph starts with a midrange defense budget of three units and increments the 

defense budget in both directions. The green stars represent the optimal (non-nested) 

objective function values. The optimal values are connected by line segments to enhance 

the three dimensional effect of the graph. The blue dots represent the nested solution 

objective function values. The distance between the green stars and the blue dots 

represent the cost difference between nested and optimal defenses. 
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(a) Starting instance of minimum budget (b) Starting instance of maximum budget 

  (c) Starting instance of midrange budget 

Figure 21.  Nesting with Parameterized Defense Budgets at Various Start Points 

In the first graph of Figure 21, nesting of defenses begins at zero defense budget. 

To visualize the effect of increasing defense budgets in the first graph, the reader can 

follow how the blue dots deviate from the green stars from left to right for any known 

attack budget. We can see in the first graph that the nested defense solution begins to 

diverge from the optimal solution when the defense budget is increased to two for all 

values of attack budgets. The biggest deviations between optimal and nested solutions 

appear to occur when the attack budget is fixed at larger values and the defense budget is 

at a midrange value. The deviations from optimality can be explained because the 

addition of defenses by one budget unit only allows for the protection of existing edges. 
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Adding a new edge to the network costs two units, and changing the budget by one unit at 

a time means that adding a new edge is unaffordable. The new edge is unaffordable 

because only one new unit of defense budget is ever available, and a new edge would 

require two new units of defense budget. Therefore, a new edge can never be considered 

as a defense when defense budgets are only increased by one unit at a time. 

In the second graph of Figure 21, nesting of defenses begins at the maximum 

defense budget of five units. To visualize the effect of decreasing defense budgets in the 

second graph, the reader can follow how the blue dots deviate from the green stars from 

right to left for any fixed attack budget. The largest deviations between the nested value 

and the optimal value appear to occur at defense budget of two. This deviation can be 

explained because the optimal solution at two defenses will choose to add a new edge as 

a defense, which has a cost of two units. But, the nested defense that is found with a 

starting point of five units does not have any new edges as defenses, but rather only 

protected existing edges. Recall that protecting an existing edge only costs one unit. So, 

as defenses are removed one by one as the defense budget decreases, the nested solution 

will deviate from the optimal solution because the new edges are not available to be 

utilized as defense. 

In the third graph of Figure 21, nesting of defenses begins at the intermediate 

defense budget of three units. To visualize the effect of both increasing and decreasing 

defense budgets in the third graph, the reader can follow how the blue dots deviate from 

the green stars by starting at the middle of the graph and moving both from right to left 

and left to right for any known attack budget. In this graph we see the largest deviations 

when the defense budget is one for most of the fixed attack values. Again, the large 

deviation can be explained because of how defenses are priced. In most of these cases a 

new edge defense is present as the only defense when the defense budget is two units. 

When the defense budget is reduced to one, the new edge defense is no longer affordable, 

and the system is left defenseless against one attack. The defenseless system against one 

attack explains the higher nested solution values. 

In each of the graphs of Figure 21, we observe that deviations from optimality do 

not monotonically grow larger as the as the budget scenarios move away from the anchor 
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point. We believe the largest deviations in all nesting strategies occur when the optimal 

defense can employ a new edge as a defense, but the nested defense approach cannot. 

Since the nested defense cannot afford to add a new edge as the defense budget is varied 

by one unit, the opportunity for large deviations between the solutions occurs. 

3. Known Defense Budget and Parameterized Attack Budget 

We use the term persistent defenses to describe a nested defense DAD problem 

instance where the defense budget is known in advance, but the attack budget is subject 

to parametric analysis. In this type of analysis, the defender has to choose a defense to 

withstand an unknown number of attacks. For the heuristic approach, the defender must 

choose a starting point instance for the nesting of defenses. The starting point instance 

can either be a minimum, maximum, or intermediate attack budget. 

The concept of nested defenses with a known defense budget and a parameterized 

attack budget is different than the type of nesting in the previous section. Here, the 

defenses chosen at the starting point instance do not change over the parameterized attack 

budget instances because the defense budget is fixed. The nesting requirement does not 

allow any defense to be swapped out for a different defense as attack budget scenarios 

change. This fundamental difference in the nature of what the term nested defense means 

when the defense budget is fixed leads us to introduce the persistent defense terminology 

in order to avoid confusion. 

To understand the effect of persistent defenses, consider the test network and a 

nested defense requirement for an unknown number of attacks when the defense budget 

is known to be four units. Tables 6 and 7 show the objective function values and the 

defenses chosen for a persistent defense from starting points of zero attack budget, 

maximum attack budget, and midrange attack budget. The non-nested optimal solutions 

are shaded in green to provide a point of comparison in Tables 6 and 7. 
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Table 6.   Effect of Attack Budget Starting Point on Persistent Defenses 

Objective Function Values 
(Defense Budget = 4) 

Attack Budget  
0 1 2 3 4 5 

Optimal Solution (Not Nested) 20 23 37 47 58 65 
Persistent Defense: Start at minimum attack budget 20 23 37 62 79 80 
Persistent Defense: Start at maximum attack budget 25 33 47 49 64 65 
Persistent Defense: Start at midrange attack budget 23 27 45 47 62 71 

 

Table 6 shows that the objective function value for the persistent defenses 

matches the optimal non- nested value when the number of attacks is equal to the starting 

point. However, persistent defenses may become suboptimal once the attack budget 

changes to a level different from the start point. Table 7 provides the detail to show that 

“persistent” defenses do not change much when the defense budget is a constant. From 

the starting point of zero attack budget, the same defenses are chosen for any level of 

attack budget. The same effect is seen with the starting point of attack budget three units. 

Table 7.   Effect of Attack Budget Starting Point on Persistent Defenses 

Defenses Chosen 
(Def. Budget=4) 

Attack Budget 

 0 1 2 3 4 5 
Optimal 

(Not Nested) 
(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(10,11) 
(10, 13) 

(1,5) 
(5,10) 
(10,11) 

(2,7) 
(7,8) 

(10,11) 
(10,13) 

Nest start point: 
Minimum Attack 

Budget 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

(3,8) 
(5,10) 

Nest start point: 
Maximum Attack 

Budget  

None None (2,7) 
(7,8) 

 

(2,7)  
(7,8) 

(10,11) 
(10,13) 

(2,7) 
(7,8) 

(10,11) 
(10,13) 

(2,7) 
(7,8) 

(10,11) 
(10,13) 

Nest start point: 
Midrange Attack 

Budget 

(3,8) 
(10,11) 
(10, 13) 

(3,8) 
(10,11) 
(10, 13)

(3,8) 
(10,11) 
(10, 13) 

(3,8) 
(10,11) 
(10, 13) 

(3,8) 
(10,11) 
(10, 13) 

(3,8) 
(10,11) 
(10, 13)

 

There is an anomaly in Table 7 when the starting point is maximum budget 

because all of the defenses are not retained across the parametrization of attack budgets. 

For attack budgets of zero, one or two units, all of the defenses chosen at the starting 
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point are not selected. A simple explanation for this anomaly is that the defenses chosen 

in Table 7 produce an equivalent objective function value as the attack budget is 

decremented by one unit at a time. In the starting instance of an attack budget of five 

units, only existing edges are protected as defenses. There are instances where not 

protecting all of these existing edges produces an equivalent objective function value. To 

see this more clearly, consider the instance of defense budget four and attack budget two, 

depicted in Figure 22. If two existing edges are defended, the objective function value is 

47. If four existing edges are defended, the objective function value is also 47. The worst-

case attacks are different for these equivalent defense choices, but the resulting objective 

function values are the same. It is not obvious in Figure 22 that these two defenses are 

equivalent, since no nodes are isolated from flow in the system on the left, but nodes 1, 5 

and 9 are isolated in the system on the right. These two systems are equivalent because 

the transport costs for the system on the left offset the penalties for unmet demand at 

nodes for the system on the right. 

 
(a) Equivalent Persistent Defense   (b) Complete Persistent Defense 

Figure 22.  Equivalent Persistent Defenses on the Test Network 

The other interesting effect seen in Tables 6 and 7 is the persistent defense is also 

optimal when there are zero, one or two attacks with a starting point instance of minimum 

attack budget. The same defense is optimal for these different attack budgets. 
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The next series of graphs show how the objective function value of persistent 

defenses compares with the optimal objective function values. In Figure 23, the defense 

budget is held constant while the attack budget is allowed to vary from three different 

starting points. The first graph starts at zero attacks and increases the attack budget one 

unit at a time. The second graph starts at five attacks and decreases the attack budget by 

one unit. The third graph starts with three attacks and increments the attack budget in 

both directions. The green stars represent the optimal (non-nested) objective function 

values. The optimal values are connected by line segments to enhance the three 

dimensional effect of the graph. The red squares represent the objective function values 

for the system with persistent defenses. The distance between green stars and red squares 

represent the cost difference between the persistent defense and the optimal defense. 
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(a) Starting instance of minimum budget (b) Starting instance of maximum budget 

  (c) Starting instance of midrange budget 

Figure 23.  Persistent Defenses with Parameterized Attack Budgets 

In the first graph of Figure 23, persistence of defenses begins at an attack budget 

of zero. To visualize the effect of increasing attack budgets in the first graph, the reader 

can follow how the red squares deviate from the green stars from the front to the back for 

any fixed defense budget. We can see in the first graph that the nested defense solution 

begins to diverge from the optimal solution when the defense budget is increased to two 

units. The biggest deviations between optimal and persistent defense appear to occur 

when the defense budget and attack budget are large values. The large deviations from 

optimality can be explained at these instances because the persistent defenses are optimal 
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for zero attacks, and they remain the same for all attack budgets. These defenses are less 

likely to be optimal when more attacks are applied to the network, and the objective 

function suffers more and more as the number of attacks against these defenses increases. 

In the second graph of Figure 23, persistence of defenses begins at the maximum 

attack budget of five units. To visualize the effect of decreasing attack budgets in the 

second graph, the reader can follow how the red squares deviate from the green stars 

from the back of the graph to the front of the graph for any fixed defense budget. We can 

see in the second graph that the magnitude of the deviations from optimality appears to 

be smaller overall than the first graph. The biggest consistent deviations between optimal 

and persistent defense appear to occur for defense budgets of four and five. An 

explanation for this behavior is that the persistent defense is optimal only when there are 

five attacks, and less attacks on the system with the same defenses result in larger costs 

than optimal defenses. 

In the third graph of Figure 23, persistence of defenses begins at a midrange 

attack budget of three units. To visualize the effect of increasing and decreasing attack 

budgets in the third graph, the reader can follow how the red squares deviate from the 

green stars from the middle of the graph to the back of the graph and again from the 

middle of the graph to the front of the graph for any fixed defense budget. We can see in 

the second graph that the magnitude of the deviations from optimality appears to be 

smaller overall than the first graph. The biggest consistent deviations between optimal 

and persistent defense appear to occur for attack budgets of two and four units for almost 

all fixed values of defense budgets. All of the deviations appear to be fairly small without 

an obvious explanation. 

4. Parameterized Defense and Attack Budgets 

Nested defenses for the DAD problem are more complicated when both the 

defense and attack budgets are unknown. We believe this situation is the most difficult 

and realistic type of scenario that an analyst can face when a prioritized list of nested 

defenses is required. First, we show that the analyst should not use the techniques of the 
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previous two subsections because the results will be inconsistent. Second, we propose a 

strategy to parameterize both the defense and attack budget to achieve nested defenses. 

a. Use of Previously Seen Nesting Methods is Inconsistent 

When both the defense and attack budgets are unknown, the defender should not 

use one of the previous nesting strategies. Nesting strategies which only parametrize one 

budget may lead to inconsistent nested solutions when both attack and defense budgets 

are uncertain. For example, the analyst could pretend that he or she knows the defense 

budget and then vary the attack budget. Then the analyst could repeat the process for each 

possible defense budget level to obtain a set of nested defenses. Alternatively, the analyst 

could pretend that the attack budget is known and then vary the defense budget. Next, the 

analyst would repeat the process for every possible attack budget and obtain a set of 

persistent defenses. Both of these approaches are not guaranteed to produce a similar set 

of solutions that are completely nested across all budget scenarios. Both of these nesting 

methods guarantee a nested solution along one axis (defense or attack budget), but it does 

not guarantee that a solution set will be nested on the other axis. An example can be seen 

in the test network. 

In the test network we see that the nested solution for a defense budget of two 

units and an attack budget of three units can produce two different nested defense 

solutions with different objective function values if the nesting strategy is changed, even 

when similar nest starting points are used. The nested solution obtained by varying the 

defense budget and holding the attack budget constant yields an objective function value 

of 67 and a defense plan to defend two existing edges. But, when the attack budget is 

varied and the defense budget is held constant, the nested solution yields an objective 

function value of 64 and a defense plan to build one new edge. Tables 8 and 9 summarize 

the different results that are obtained when only one budget is parameterized. In Table 9, 

note that only one defense is chosen with the defense budget of two units because the cost 

of adding edge (5, 10) in the test network is two units. 
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Table 8.   Nested Defense Obtained by Varying Defense Budget 

Defense and Attack 
Budget Unknown 

Defense Budget 
0 1 2 

Attack Budget = 3 
Nest Start: Minimum 
Defense Budget 

Objective = 87 
Defend: None 

Objective = 80 
Defend: (10, 13) 

Objective = 67 
Defend: (10, 13), (7, 8)

 

Table 9.   Nested Defense Obtained by Varying Attack Budget 

Defense and 
Attack Budget 
Unknown 

Attack Budget 
0 1 2 3 

Def. Budget = 2 
Nest Start: Min. 
Attack Budget 

Objective = 22 
Defend: (5, 10)

Objective = 26 
Defend: (5, 10)

Objective = 47 
Defend: (5, 10) 

Objective = 64 
Defend: (5, 10) 

 

In Tables 8 and 9, the scenarios shaded in orange both have the same defense 

budget of two and attack budget of three, but the objective function values and defenses 

are different. When both the defense budget and attack budget are uncertain, the analyst 

cannot arbitrarily choose to hold one budget constant and incrementally change the other 

budget. The arbitrary choice of which budget to hold fixed and which to vary affects both 

the objective function value and the defense plan obtained. 

b. V Nesting Method 

A different method is needed to produce nested solutions to DAD problem 

instances under uncertain defense and attack budgets. This method must be able to 

produce defenses that are nested and also account for the uncertainty in both the defense 

and attack budgets. We have developed a nesting algorithm called V nesting that can 

account for both types of budget uncertainty. Instead of nesting by either holding the 

defense or attack budget constant, this method increases both budgets simultaneously. 

This algorithm chooses a series of successive start points called anchor points and builds 

nested defenses along each uncertain budget axis. The base of the V is the anchor point 

instance, and each arms of the V is the nested instance resulting from varying one of the 

budget parameters. This method ensures that each successive anchor point has nested 
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defenses from the previous anchor point as well. Since each axis builds nested defenses 

from its respective anchor point, the group of problem instances that are defined by a 

particular anchor point resembles a “V” shape when plotted on a graph with the defense 

budget and attack budget as the axes. We observe that V nesting is not the only possible 

strategy for nesting defenses when both defense and attack budget are subject to 

parameterization. 

The V nesting algorithm works in the following fashion. Assume that both the 

defense budget and attack budget are not known to the analyst. The analyst chooses a 

starting point scenario for nesting, such as minimum defense and attack budgets. The 

starting point scenario serves as an anchor instance to nest defenses for similar instances. 

We defense a similar instance to be a DAD problem instance that has either the same 

defense budget or attack budget to the anchor problem instance. From the starting point 

solution, nested defenses to similar problem instances are obtained in two steps. The first 

step is to generate new problem instances by holding the attack budget constant, and 

increase the defense budget incrementally by one unit to the maximum parameter value. 

Each new problem instance is solved with the nested defense requirement. The second 

step is to generate more new problem instances by holding the defense budget at 

minimum and increasing the attack budget by one unit until the maximum attack budget 

is reached. No new defenses are added in the second step, but the new problem instances 

will have a defense that is the same as the starting point defense. Thus, all similar 

problem instances that either increase the defense budget or the attack budget, but not 

both, must have a nested defense in comparison to the anchor instance. Next, another 

anchor problem instance is created by taking the last known anchor point and increasing 

the defense and attack budgets by one unit and obtaining a nested defense based on the 

previous anchor. The process repeats at the new anchor point. Anchor points are 

successively created until all defense budget and attack budget combinations have been 

evaluated. The pseudo-code of the V-nesting algorithm summarizes how the algorithm 

forms a nested defense. 
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“V” nesting algorithm (increasing defense & attack budget) 

Inputs: 
DAD minimum cost flow network with parameterized defense & attack budgets 
Defense level = minimum defense budget (zero for test network) 
Attack level = minimum attack budget (zero for test network) 

Outputs: Objective function values and nested defenses for all budget scenarios 
Algorithm: 

While defense level < maximum budget OR attack level < maximum budget: 
Solve “Anchor” DAD problem instance 
Append defenses obtained to nested defense list 
While defense level < maximum defense budget: 

Increment defense level by one unit 
Solve “similar” DAD problem instance 
Append defenses obtained to nested defense list 

Reset defense level = anchor defense budget 
Reset nested defense list to anchor nest defense list 
While attack level < maximum attack budget: 

Increment attack level by one unit 
Solve “similar” DAD problem instance 
Append defenses obtained to nested defense list 

Reset attack level = anchor defense budget 
Reset nested defense list to anchor nest defense list 
Create new “anchor” DAD problem instance: 

Reset nested defense list = nested defense list for last anchor point 
Increment attack level by one unit 
Increment defense level by one unit 
 

Figure 24 illustrates how successive problem instances are created for different 

starting point instances of the V nesting algorithm. The axes of each plot are defense 

budget and attack budget levels. Each point on the grid represents a DAD problem 

instance for a specified defense budget and attack budget. The points with assigned letters 

represent the anchor points for nesting of defenses. All points of the same color have a 

nested defense. Also, the assigned letter points have nested solutions from each other. 

The colored arrows describe how nested defenses successively build from each anchor 

point. The black arrows show how each anchor point is nested from a previous anchor. 
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(a) Starting instance of minimum budget (b) Starting instance of maximum budget 

  (c) Starting instance of midrange budget 

Figure 24.  Nesting Strategies for Parameterized Defense and Attack Budgets 

The first plot of Figure 24 helps to explain the V-nesting strategy from a starting 

point of minimum defense and attack budgets. First, we start at point A, which represents 

a DAD problem instance of zero defense and attack budget. The optimal solution to this 

instance is the starting point for the nesting of all defenses. Next, the horizontal red arrow 

depicts that nested solutions for problem instances of zero attacks and various defenses 

are determined by increasing defense budget by one unit, with each solution nested by the 

previous solution. The vertical red line depicts that nested solutions for zero defenses are 

obtained by increasing the number of attacks by one unit, and holding the defense budget 

at zero. Obviously, there are no defenses chosen for any of these instances, since there is 
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no defense budget available. In order to obtain a nested solution at point B, we follow the 

nesting black line from the instance at point A to the instance of one defense and zero 

attacks and then increase the defense budget by one unit from that instance to obtain the 

new nested defense instance at point B. The process repeats itself at point B to form all of 

the green problem instances that have nested solutions that are nested from the instance at 

point B. Nested defenses for problem instances derived from points C, D, E and F are 

determined in the same fashion. Each problem instance of an equal number of defenses 

and attacks then has a nested solution set. Each of these instances becomes a base for a V 

shape of problem instances that either vary the attack or defense budgets. Nested 

solutions are built from these base instance solutions to complete the nesting strategy. 

The V-nesting strategy for a starting point instance of maximum defense and 

attack budgets is shown in the second plot of Figure 24. This nesting start point requires a 

few modifications to the previously discussed algorithm. The first anchor point would be 

initialized to maximum defense and attack budgets. The initial nested defenses list 

contains the defenses utilized in the optimal solution to the anchor point budget scenario. 

As successive DAD problem instances are solved, the nested defense list has items 

removed instead of appended. The starting point is at problem instance A on the second 

plot. The development of nested defenses from point A is derived in a similar fashion. In 

order to nest from anchor point A to anchor point B, the nested defense for one less 

defense budget unit is also nested as the attack budget is reduced by one unit. The black 

arrows show how the nesting is performed. The process is repeated for anchor points B 

through F to complete the V-nesting strategy. 

The V-nesting strategy is slightly more complicated when starting from a 

midrange defense and attack budget. The third plot of Figure 24 shows how the nesting 

strategy grows from a midrange primary anchor point. The first anchor point A is solved 

optimally. The increasing budget nesting strategy is used to determine all problem 

instances from anchor points A through C. The decreasing budget nesting strategy is used 

for problem instances that can be defined in terms of anchor points A, D E, and F. 

However, the problem instances represented by the yellow dots in the third plot are not 

defined in terms of either of these nesting strategies. In order to have nested defenses at 
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these instances, we define additional anchor points from previously defined problem 

instances that are nested from the first anchor point A. These additional anchor point 

problem instances are labeled G1 through G5. Each of these five anchor point instances 

has a nested defense from the first anchor point A. From each of the G anchor points the 

defense budget is increased or decreased, as necessary, to define the remaining problem 

instances. All instances have a defense that is nested in terms of the starting point 

problem instance of anchor point A. 

The next three graphs show how the objective function value of V-nested 

defenses compares with the optimal objective function values. In Figure 25, the effect on 

the objective function value of nesting defenses with a parameterized defense and attack 

budgets is compared with optimal objective function values. The defense and attack 

budgets are allowed to vary from three different starting points. The first graph starts at 

zero defense and attack budgets. The second graph starts at defense and attack budgets at 

a maximum of five units. The third graph starts at a midrange defense and attack budget 

of three units each. The green stars represent the optimal (non-nested) objective function 

values. The optimal values are connected by line segments to enhance the three 

dimensional effect of the graph. The magenta diamonds represent the nested defense 

solution objective function values. The vertical distances between green stars and 

magenta diamonds represent the objective function value difference between the nested 

defense and the optimal defense. 
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(a) Starting instance of minimum budget (b) Starting instance of maximum budget 

  (c) Starting instance of midrange budget 

Figure 25.  Nesting with Parameterized Defense and Attack Budgets 

In the first graph of Figure 25, nesting of defenses begins at a defense and attack 

budget of zero. To visualize the effect of increasing defense and attack budgets in the first 

graph, the reader can follow how the magenta diamonds deviate from the green stars 

from the bottom left corner of the graph to the top right corner of the graph. We can see 

in the first graph that the nested defense solution begins to diverge from the optimal 

solution when the attack budget increases, but the bigger deviations occur when the 

defense budget is increased to two. This can be explained because at a defense budget of 

two units, the optimal solution can add new edges as defense to the system. But, the V-
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nesting strategy cannot use these defenses because it only increments defenses by one 

unit at a time. Since only one new unit of defense budget is ever available to the 

algorithm, adding a new edge is unaffordable and never selected. 

In the second graph of Figure 25, nesting of defenses begins at the maximum 

defense budget and attack budget of five units. To visualize the effect of decreasing 

defense and attack budgets in the second graph, the reader can follow how the magenta 

diamonds deviate from the green stars from the top right corner to the bottom left corner 

of the graph. The second graph shows that in general terms, the V-nesting approach is a 

very close to the optimal solution when beginning from a starting point of maximum 

budgets. However, we believe that a unique aspect of the problem instance allows this 

method to have the smallest deviation. The optimal solution of the maximum defense and 

attack budget problem instance involves defending five existing edges, and defending an 

existing edge costs one unit. Thus, removing one unit of budget at a time will result in 

defending a corresponding amount of existing edges to the parameterized defense budget. 

The added edges costing two defense units do not appear in the anchor scenario for this 

problem instance, so large deviations from optimality do not occur. 

In the third graph of Figure 25, nesting of defenses begins at a defense and attack 

budget of three units. To visualize the effect of changing defense and attack budgets in 

the second graph, the reader can follow how the magenta diamonds deviate from the 

green stars from the center to the bottom left corner of the graph and again from the 

center to the top right corner of the graph. We can see in the third graph that deviations 

between the nested and optimal solutions are very small from the starting point to the 

minimum budget levels. However, deviations between the nested and optimal solutions 

do develop from the middle and are fairly substantial when the defense budget or the 

attack budget are at their maximum values of five units. 

D. NESTED DEFENSE ALGORITHM STEP SIZE 

Next, we change an assumption on how a nesting of defenses operates. Previously 

we assumed that nesting of defenses required an incrementing of the parameterized 

budgets by one unit. We show that this definition of nesting can be problematic. We will 
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broaden the definition of nesting so that the incremental change of budgets does not have 

to be by one unit. The size of the incremental change of budget can be referred to as the 

“step size” of the nesting requirement. Define a nesting step size to be a nesting of 

defense budget by an increment other than one. For example, nesting could occur by 

every two defense budget units, so that the five best defenses includes the three best 

defenses, and the three best defenses includes the one best defense. Generally, a nesting 

requirement of k budget units would mean that the k best defenses would be a subset of 

the 2k best defenses, which would also be a subset of the 3k best defenses, and so on. 

We want to examine the step size between nested defenses because not all 

defenses have the same cost in the test network. Defending an existing edge costs one 

unit of defense budget, but adding a new edge to the network costs two defense budget 

units. We are never be able to add a new edge to the network if we use a nesting strategy 

that adds to the defense budget one unit at a time. Since we only have one more unit of 

budget available, the only option available is to defend another existing edge. 

To illustrate why the use of a nested step size of one defense can be problematic, 

consider an example from the test network using the myopic greedy heuristic algorithm. 

We will consider nesting strategy of increasing defenses, and use the instance of defense 

and attack budgets of one unit as a starting point. The optimal solution to the DAD 

problem instance is to defend the existing edge (10, 13) with an objective function value 

of 32. In order to obtain the nested defense for the instance of defense budget of two and 

attack budget of one, the defense of edge (10, 13) must be included in the solution. The 

best feasible nested defense solution for defense budget of two and attack budget of one 

is to defend edges (10, 13) and (2, 7), with an objective function value of 30. However, 

the optimal solution for the defense budget of two and attack budget of one problem 

instance is to add new edge (5, 10) with an objective function value of 26. The problem 

that can be seen in the one step nesting of defenses approach is that it would be 

impossible for the nesting algorithm to ever even consider building new edge (5, 10) 

because it has a defense cost of 2 units. When the defense budget is increased from one 

unit to two units, there is actually only one new unit of defense budget that can be used, 

since the nesting requirement of defending edge (10, 13) requires the consumption of one 
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unit of defense budget. Therefore, the nesting algorithm can only choose a second 

defense that costs one unit of defense budget. The only defense options available in the 

test network that cost one unit are defending existing edges. A nesting algorithm with a 

step size of one is forced to exclude adding new edges, since this type of defense has an 

unaffordable cost of two units. Since the step size of one nesting algorithm cannot 

consider the defense that leads to optimal solution for the defense budget of two and 

attack budget of one problem instance, it is impossible for it to obtain the optimal 

solution. The plots of Figures 26 show the nested and optimal solutions on the test 

network. A more general statement from this example is given in an observation. 

Observation 3–2: A nested solution algorithm that has a step size smaller than the cost of 

any particular defense option cannot ever consider that particular defense option for a 

feasible solution, except during the anchor point budget scenario. 

 
(a) Initial Nested Solution is Optimal         (b) Nesting Excludes Optimal Solution 

Figure 26.  Effect of Budget Step Size on Nested Defense 

In order to prevent the situation in the Figure 26, a nesting solution should have a 

minimum defense budget step size that can allow the choice of any defense option. In the 

case of the test network, defending existing edges costs one unit and adding new edges 

costs two units, so the minimum step size should be two units of defense budget. Notice 

that the minimum step size of the defense budget has nothing to do with the minimum 
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step size of the attack budget. But, a similar problem could exist if attacking different 

items in the system had different costs to the attacker. In that case, then the minimum step 

size in the attack budget should be equal to the cost of the largest attack, so that every 

attack could be considered. 

In Figure 27, the effect on the objective function value of nesting defenses with a 

parameterized defense budget and a known attack budget is compared with optimal 

objective function values with a defense budget step size of two units. The number of 

attacks are held constant while the number of defenses is allowed to vary from two 

different starting points. The first graph starts at defense budget of one and increases the 

defense budget two units at a time. The second graph starts at a maximum defense budget 

of five units and decreases the defense budget by two units. The green stars represent the 

optimal (non-nested) objective function values. The optimal values are connected by line 

segments to enhance the three dimensional effect of the graph. The blue dots represent 

the nested solution objective function values. The vertical distances between the green 

stars and the blue dots represent the objective function difference between the nested 

defense and the optimal defense. 

 
(a) Starting instance of one defense unit (b) Starting instance of five defense units 

Figure 27.  Nested Defenses for a Two Unit Step Size 
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In the first graph of Figure 27, nesting of defenses begins at a defense budget of 

one unit. To visualize the effect of increasing defense budgets in the first graph, the 

reader can follow how the blue dots deviate from the green stars from left to right for any 

fixed attack budget. We can see in the first graph that the nested defense solution almost 

perfectly matches the optimal solution as the defense budget is increased from one to 

three units for every instance of known attack budgets. There is only a small difference 

between the nested solution and the optimal solution as the defense budget is raised again 

from three units to five units for most instances of fixed attack budgets. In general, it 

appears that the use of a larger step size makes the nested defense almost as good as the 

optimal defense.  

In the second graph of Figure 27, nesting of defenses begins at a maximum 

defense budget of five units. To visualize the effect of decreasing defense budgets in the 

second graph, the reader can follow how the blue dots deviate from the green stars from 

right to left for any fixed attack budget. We can see in the second graph that the nested 

defense is a nearly perfect match to the optimal defense when the defense budget is 

decreased from five to three units. When the defense budget is lowered again from three 

units to one unit, the nested defense is a perfect match to the optimal solution in all but 

one instance. The only deviation between the nested defense and the optimal defense 

occurs when the known attack budget is two units. Again, it appears that the use of a step 

size greater than one makes the nested defense almost as good as the optimal defense. 

The shortcoming of this approach is that some problem instances are not defined 

because the defense budget was skipped by the larger step size. It is possible that in a 

scenario where the defense budget is uncertain, that a defense budget of four is realized, 

but the nesting analysis only covers defense budgets of one, three and five. The action 

that should be taken by an analyst in this situation is unclear.  

The prioritized list gives the defenses that should be chosen for the next lower 

defense budget. We recommend the implementation of those defenses in this case. It 

would be possible to have no extra defenses and leave the remaining portion of the 

defense budget unused. This course of action is most likely suboptimal since an 

additional defense may force the attacker to change their plans. The other course of 
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action would be to use the defenses chosen in the prioritized list for the next lowest 

defense budget, and then choose one more defense to completely exhaust the known 

defense budget through another round of analysis. 

It is unnecessary to perform an analysis of the effects of step size for persistent 

defenses when the defense budget is known in advance and the attack budget is unknown 

on the test network. Recall that in our test network all attacks have an equal cost of one 

unit. There are no attacks that have costs greater than one, so there is no need to undergo 

an investigation of larger step sizes of persistent defenses, since all possible attacks can 

be considered with a step size of one unit of attack budget. 

E. NESTED DEFENSE DISTANCE FROM OPTIMALITY MEASUREMENT 

When considering how to assess the optimality costs of a nested defense to a 

DAD problem instance, a methodology to measure the distance between the nested 

defenses and the optimal defenses is necessary. In our analysis so far, we have seen how 

to graphically compare nested solutions to optimal solutions for all budget scenarios. 

Some insight can be gained from looking at plots of nested defenses and optimal defenses 

for all budget scenarios. But, the graphs presented in the last section do not provide 

conclusive proof that one nesting strategy is preferable to another. 

We desire one simple number as an assessment of the quality of the prioritized list 

of nested defenses. We need to measure a distance from optimality for a nested set of 

defenses to a DAD problem instance. The concept of measuring the cost of nested 

defenses has been touched upon briefly in the literature. Koc and Morton define the “cost 

of prioritization” as the “percentage difference of the optimal prioritization solution from 

the wait-and see solution” (2015, p. 591). The wait and see solution refers to the optimal 

solution without a prioritized list of nested defenses. We examine five different methods 

to measure the cost of prioritization. 

1. Vector Analysis 

The nested defense objective function values for parameterized defense and/or 

attack budget scenarios can be formed into a vector. Similarly, the corresponding optimal 



 93

non-nested objective function values for these parameterized budget scenarios can also be 

formed into a vector. We consider the optimal non-nested solution to the problem as a 

common point of reference or zero vector to compare against any nested defense solution 

vector. We define the difference vector as the vector of differences between the optimal 

zero vector and the nested solutions vector. The goal of the vector norm analysis is to 

determine which nesting strategy is the closest to the optimal solution when a choice of 

nesting strategies are available to an analyst. 

The difference vector gives the detail of how far each nested solution is from the 

optimal solution. All of the parametrized budget scenarios are captured as elements in the 

difference vector. Vector norms can be computed on the difference vector to give a one 

number comparison of a nested solution strategy with the optimal solution. Leon (2010, 

p. 238) defines common vector norms. The 1-norm is the sum of the absolute value of all 

differences. The 2-norm is the square root of the sum of all squared differences. The 

infinity norm is the maximum absolute value difference within the vector of differences. 

These norms are summarized in Figure 28. The nesting strategy that has the smallest 

valued norms would be the closest to the optimal solution. A decision maker should 

choose a nesting strategy with the smallest vector norms. 

Vector Norm Analysis Definitions: 

b B     Set of all defense budget values; 
(Note: bmin & bmax are minimum & maximum values.) 

a A     Set of all attack budget values 
(Note: amin & amax are minimum & maximum values.) 

Optimalba    Optimal objective function value for budgets b & a. 
Nestedba    Nested objective function value for budgets b & a. 
δba = nestedba – optimalba  Difference between solutions for budgets b & a. 
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Figure 28.  Definitions of Vector Norms. Adapted from Leon (2010). 
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Observation 3–3: Each difference between the nested defense value and the optimal value 

must be a non-negative number. 

Proof of Observation 3–3: It is impossible to achieve any feasible solution to a 

problem instance that is better than the optimal solution. 

In order to better understand how the vector norm allows us to assess the 

performance of a nesting strategy, consider the test network with the myopic greedy 

heuristic nesting strategy where both the defense budget and the attack budget are 

unknown. Our solution performs the V-nesting strategy from three different starting point 

instances. The goal of the vector norm analysis is to determine whether the starting point 

of minimum, midrange, or maximum budget is a better strategy for V-nesting. Define the 

vectors VMIN, VMID and VMAX to be the difference vectors associated with starting points 

of minimum, midrange and maximum defense and attack budget scenarios, respectively. 

Table 10 shows the associated norms for VMIN, VMID and VMAX on the test network with 

parameterized defense and attack budgets. 

Table 10.   Vector Norm Analysis at Different Starting Point Instances 

Test Network –Defense and 
Attack Budget Unknown 

VMIN VMID VMAX 

Vector 1-norm: ǁVǁ1 118.0 75.0 28.0 
Vector 2-norm: ǁVǁ2 31.3 24.7 9.5 
Vector ∞-norm: ǁVǁ∞ 16.0 13.0 6.0 

 

In Table 10 we can see that the norms associated with the VMAX vector are always 

smaller than the norms associated with the VMID and VMIN vectors. Therefore, an analyst 

should choose the nesting strategy start point of maximum defense and attack budgets 

because it is closest to the optimal solution. 

2. Matrix Analysis 

It is also possible to analyze the difference between nested defense solutions and 

optimal solutions in a matrix we call the difference matrix. Rows of the matrix represent 

the defense budget in a problem instance, in ascending order from minimum to 

maximum. Columns of the matrix represent the attack budget in a problem instance, also 
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in ascending order from minimum to maximum. Any particular element in the difference 

matrix represents the difference between the nested defense objective function value and 

the optimal objective function value for a specific defense and attack budget. 

The use of the difference matrix to calculate a distance between a set of nested 

defenses and the corresponding optimal defenses can be performed with matrix norms 

shown in Figure 29. The matrix 1-norm represents the maximum absolute column sum 

(Leon, 2010, p. 407). The matrix 1-norm corresponds to fixing the number of attacks and 

calculating the maximum sum of differences across changing defense budgets. The 

matrix infinity norm represents the maximum absolute row sum (Leon, 2010, p. 407). 

The matrix infinity norm calculates the maximum sum of differences as the attack budget 

changes. We can also use the matrix Frobenius norm, which is defined as the square root 

of the sum of squares of all of the elements in the matrix (Leon, 2010, p. 235). 
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Figure 29.  Description of Matrix Norms. Adapted from Leon (2010). 

Each of these matrix norms is best suited to a particular type of parametric 

programming analysis. The matrix 1-norm would be best when the defense budget is 

subject to parameterization and the attack budget is known. The matrix infinity norm 

would be best when the attack budget is known and the defense budget is subject to 

parameterization. Lastly, an analysis of the Frobenius norm would make sense when both 

the attack and defense budget are unknown. 

To understand why the matrix 1-norm is best for unknown defense budgets, 

suppose the defense budget is parameterized and the attack budget is known to be two 
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units. In this case, the matrix of all possible defense and attack budget combinations 

reduces to a simple column vector, as shown in Figure 30. 
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Figure 30.  Use of the Matrix 1-Norm for Unknown Defense Budgets 

Conversely, to see why the matrix infinity-norm is best for the unknown attack 

budget situation of “persistent defenses,” suppose the defense budget is fixed at two units 

and the attack budget is parameterized. In this case, the matrix of all possible defense and 

attack budget combinations reduces to a simple row vector, as shown in Figure 31. 
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Figure 31.  Use of the Matrix Infinity-Norm for Unknown Attack Budgets 

Lastly, the situation of unknown defense and attack budgets can also be analyzed 

with matrix norms. The Frobenius norm is the unbiased choice for this situation since 

both budgets are unknown and parameterized. Each element of the difference matrix is 

scrutinized equally with the Frobenius norm. However, nothing prohibits the analyst from 

using the other matrix norms. If the analyst prefers to bias the analysis in favor of the 

unknown defense budget, then the matrix 1-norm could be employed. Similarly, if the 

analyst is biased toward the unknown number of attacks that must be defended, the 

matrix infinity norm could be used. 

To see how matrix norms are computed for the test network with unknown 

defense and attack budgets, we define three difference matrices, MMIN, MMID and MMAX 

which denote starting points of minimum, midrange and maximum defense and attack 
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budgets, respectively. The V-nesting approach is used as the nested defense strategy. The 

difference matrices for each starting point are presented in Figure 32. 

 

Figure 32.  Difference Matrices for Unknown Defense and Attack Budgets 

The associated matrix norms for each difference matrix are presented in Table 11. 

Note that the matrix norms and the vector norms presented in the previous section 

produce different values. However, the overall result for the analyst remains the same 

because the matrix norms associated with MMAX are smaller than the matrix norms for 

MMID and MMIN. Matrix norm analysis also recommends the choice of a nesting start 

point of maximum defense and attack budgets when both budgets are unknown. 

Table 11.   Matrix Norm Analysis at Different Starting Point Instances 

Test Network –Defense and 
Attack Budget Unknown 

MMIN MMID MMAX 

Matrix 1-norm: ǁMǁ1 33.0 35.0 7.0 
Matrix Frobenius-norm: ǁMǁF 31.3 24.7 9.5 

Matrix ∞-norm: ǁMǁ∞ 43.0 32.0 13.0 
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3. Percentage Gap From Optimality 

A different way to measure the distance of a nested defense from the optimal 

defense is to measure the “cost of prioritization” (Koc & Morton, 2015, p. 591). In this 

approach, the analyst calculates the percentage gap between the optimal non-nested 

solution and the nested solution for each DAD instance using the formula in Figure 33. 

(   )
%   100%

 

nested objective optimal objective
optimality gap

optimal objective


   

Figure 33.  Optimality Gap Equation. Adapted from Koc and Morton (2015). 

Each nested defense objective function value would be compared to the optimal 

non-nested objective function value in order to determine the percentage from optimality 

gap. In the test network, this analysis produces 36 measurements. In order to reduce these 

36 measurements to just one measurement, the analyst can use summary statistics. The 

analyst can calculate the mean and the standard deviation of the percentage of optimality 

gap. However, the analyst must be cautioned to not make the faulty assumption that an 

underlying distribution exists on this population of numbers. This set of percentages is 

not a sample from a larger set and there is no reason to believe that the percentage of 

optimality gap follows some type of named distribution. 

Table 12 summarizes the optimality gap in the situation where both the defense 

budget and attack budget are unknown. We use the “V” nesting strategy to obtain our 

results. The optimality gap analysis shows us that the best choice for the nesting start 

point is the instance of maximum defense and attack budgets. This start point has the 

smallest mean percentage gap with the tightest standard deviation. In the worst problem 

instance, this starting point also has the smallest optimality gap. 
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Table 12.   Test Network Optimality Gap Percentages 

Defense and 
Attack Budget 
Starting point 

Optimality Gap Percentages 
Mean (%) Std. Dev (%) Worst (%) 

0 (Minimum) 7.10 8.43 28.13 
3 (Midrange) 4.32 6.69 22.00 
5 (Maximum) 2.10 3.74 13.60 

 

4. Minimax Regret Analysis 

Another method to measure the distance from optimality of various nesting 

strategies would be the decision theory criteria of minimax regret. A common definition 

of regret is given by Taylor as “the difference between the payoff from the best decision 

and all other decision payoffs” (2007, p. 519). In our context, each budget scenario 

instance has a payoff of the difference in objective function values between the nested 

and optimal defenses. Each problem instance can have a different payoff depending on 

the starting point alternative that is chosen by the analyst. The analyst’s choice of 

alternatives are the nesting starting point instances of minimum, midrange or maximum 

defense and/or attack budgets. The goal in minimax regret analysis is to choose the 

alternative that minimizes the maximum amount of regret for any possible future 

outcome (Taylor, 2007, p. 519). 

For example, we use the test network with unknown defense and attack budgets 

for our heuristic strategy. The decision matrix in Table 13 gives the difference between 

the nested defense and optimal non-nested defense objective function values for all future 

budget scenarios. Each possible future defense and attack budget combination has a 

payoff that is influenced by the three possible alternatives of beginning the nesting of 

defenses minimum, midrange or maximum defense and attack budgets. Next, the Table 

14 regret matrix is built by examining the payoffs in each column and assigning zero to 

the smallest value. The regret associated with the other values in each column is 

computed as the difference between the obtained value and the smallest value. From the 

regret matrix, we can see that the best choice of nesting starting points is the maximum 

defense and attack budget alternative because it has the smallest maximum regret. 
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Table 13.   Decision Matrix for Unknown Defense and Attack Budgets 

 
 

Table 14.   Regret Matrix for Unknown Defense and Attack Budgets 

 
 

5. Equal Likelihood Analysis 

Another method available to the analyst in judging the distance between a nested 

defense and the optimal defense would be to view each possible defense and attack 

budget realization as equally likely. In classical decision theory, this type of approach is 

called the equal likelihood or Laplace criterion (Taylor, 2007, p. 521). This type of 

decision approach would make sense when the analyst has absolutely no insight about 

what the realization of the defense or attack budget could be. For each different nesting 

starting point scenario, the analyst would assign an equal weight to each payoff for all 

possible defense and attack budget combinations that are unknown. Next, each row 

alternative is the weighted sum of all payoffs. The smallest sum represents the best 

outcome, since we are seeking an alternative that is as closest to the optimal solution. 

Table 15 shows equal likelihood analysis applied to the test network with 

unknown defense and attack budgets. Since there are 36 possible combinations of defense 

and attack budgets for the test network, we assign a weight of 1/36 to each possible 

payoff in the decision matrix. Each difference value is multiplied by the equally likely 
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probability of 1/36 and the sum of all weighted differences is made for each starting point 

alternative. The smallest sum is preferred choice. Table 15 shows us that the starting 

point of maximum defense and attack budgets is the best choice. 

Table 15.   Equal Likelihood Analysis for Unknown Defense and Attack 
Budgets 

 
 

F. NESTED DEFENSES WITH A SUBOPTIMAL STARTING SCENARIO 

In this section, we show that it is possible to find a nested defense that is closer to 

the optimal solution than any nested defense that begins with an optimal solution to a 

DAD problem with a parameterized budget. In this approach, the nesting heuristic does 

not begin with a starting point budget scenario that is equal to the optimal solution. We 

refer to type of approach to the nested defense DAD problem as suboptimal nesting. 

Suboptimal nesting involves finding nested defenses to parameterized DAD problem 

instances that are closer to optimal over the entire range of parameterized budgets than 

any particular nested defense that begins with the optimal solution to the DAD problem 

instance. The vector norm of differences of the suboptimal nested defense is smaller than 

the vector norm of any nested defense that begins at an optimal starting point. 

Up to this point, we have assumed that a heuristic search for nested defenses must 

begin with an optimal solution to a nested defense DAD problem instance with a 

parameterized budget. We now remove that assumption. In this section only, we require 

that a nested defense objective function value may not equal the optimal defense 

objective function value for any specific DAD problem instance.  
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Suboptimal Nested Defense Assumption 

 *                                                   ijd ijdZ Z    
 (3.3) 

 

Proposition 3–4: It is possible that the nested defense closest to the optimal solution may 

have no instances with objective function values that are equal to the optimal solution. 

Proof of proposition 3–4: For an example of an instance where suboptimal nesting 

is the closest strategy, consider the test network with a defense budget of five units, and a 

parameterized attack budget. Recall that we use the term persistent defense for a known 

defense budget and an unknown attack budget. An analyst can solve DAD problem 

instances to find different starting points for persistent defenses. However, the analyst is 

now interested in finding a suboptimal defense that might be closer to optimal. After trial 

and error with starting point instances that are suboptimal, the analyst could find a 

suboptimal nested defense strategy that is overall closer to the optimal non-nested 

defense in terms of the vector norm than any of the optimal starting point strategies. 

The objective function values are shown in Table 16 for each different starting 

point. The optimal objective function values are shaded green in Table 16 to show that 

the suboptimal nesting strategy is not optimal for any problem instance. Table 17 shows 

the persistent defenses for defending the test network against an unknown number of 

enemy attacks. Figure 34 gives a graphical representation of the data in Table 16. It is not 

immediately obvious from Table 16 or Figure 34 that the suboptimal nesting strategy is 

overall the closest nesting strategy to the optimal solution. 

Table 16.   Objective Function Values for Suboptimal Nesting Example  

Nesting Strategy Attack Budget 
 0 1 2 3 4 5 

Optimal Solution (not nested) 20 21 32 41 53 59 
Start point: Minimum Attack Budget 20 22 37 62 63 71 
Start point: Midrange Attack Budget 23 25 40 41 56 63 
Start point: Maximum Attack Budget 25 27 42 43 58 59 

Suboptimal Nest 21 23 37 46 55 62 
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Table 17.   Nested Defenses in Test Network for Suboptimal Nesting Example 

Nesting Strategy (Defense Budget =5) Persistent Defenses Chosen 
Start point: Minimum Attack Budget (3, 8) (5, 10) (10, 13) 
Start Point: Midrange Attack Budget (3,8) (9, 13) (10, 11) (10, 13) 
Start point: Maximum Attack Budget (2, 7) (7, 8) (9, 13) (10, 11) (10, 13) 

Suboptimal Defense for All Attack Budgets (8, 12) (3, 8) (9, 10) 
 

 

Figure 34.  Objective Function Values for Various Nesting Strategies 

A comparison of the difference vector norms proves that suboptimal nesting can 

be closer to optimal than any other nesting strategy. The difference vectors are shown in 

Figure 35. The definitions of VMIN, VMID, and VMAX are unchanged, and VSUB is defined 

as the difference between the suboptimal nesting and optimal. The associated norms for 

these vectors are all given in Table 18. The smallest values for each norm are shaded 

green in Table 18, and it can easily be seen that the suboptimal nesting strategy has the 

smallest vector norms. Therefore, it is possible that a suboptimal nesting strategy can be 

the closest nesting strategy to the optimal solution in a DAD problem instance. 



 104

 

Figure 35.  Difference Vectors for Suboptimal Nesting Example 

Table 18.   Difference Norms for Suboptimal Nesting Example 

Defense Budget= 5 and 
Attack Budget Unknown 

VMIN VMID VMAX VSUB 

Vector 1-norm: ǁVǁ1 49.0 22.0 28.0 18.0 
Vector 2-norm: ǁVǁ2 26.7 10.7 13.8 8.2 
Vector ∞-norm: ǁVǁ∞ 21.0 8.0 10.0 5.0 

 

Proposition 3–5: A suboptimal nested defense solution with smaller difference norms 

than all other nested defense solutions with optimal starting points will not always exist 

for a DAD problem instance with a parameterized budget. 

Proof of proposition 3–5. Consider a network where the optimal defenses for an 

unknown defense budget are also a nested defenses. Nehme and Morton (2010) have 

proven that such networks exist. A nested defense that is also the optimal defense would 

have a difference norm of zero. Since no defense can have a better objective function 

value than the optimal defense in a DAD problem, it would be impossible to find a nested 

defense that is better than the optimal defense. 

We have shown that it is possible to have a nested or persistent defense to a 

parameterized budget DAD problem instance that does not have any solutions that are 
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common with the optimal solutions. The problem with searching for a suboptimal nested 

defense is that finding such a defense is simply an intelligent search by the analyst for a 

better nested defense than those that are optimal at the nesting starting points. This 

method relies upon the analyst’s knowledge and experience with the system. 

Unfortunately, this kind of “trial and error” method for finding a nested defense is 

nothing more than a heuristic that is limited by the time and talent of the analyst. We 

need a deliberate way to find the best nested defense for unknown budgets. 

G. OPTIMIZING THE BEST NESTED DEFENSE  

Our investigation up to this point has been focused on heuristic strategies for 

finding a nested defense. We now desire an exact procedure to produce the best possible 

nested defense for a DAD problem. The best nested defense is defined as a nested defense 

that has the smallest difference from the optimal non-nested defenses for a DAD problem 

instance with parameterized defense and/or attack budgets. The smallest difference can 

be measured in different ways, which we have previously introduced as the vector 

difference norms. In this section, we do not place any restrictions on whether nested 

defenses may or may not equal the optimal defense objective function value. We 

formulate the nested defense DAD problem as parametric programs with different norms 

as objective functions. 

Our approach to finding the best nested defense to a DAD problem instance fits 

the framework of a stochastic linear program because some of the problem data is 

uncertain (Birge & Louveaux, 2011, p. 57). The action of the defender in choosing the 

best nested defense can be thought of as a “first stage decision” and the worst-case attack 

chosen by the attacker as well as the subsequent optimal operation of the resulting system 

can be thought of as “second stage decisions” (Birge & Louveaux, 2011, p. 58). The 

structure of the nested defense DAD parametric programming problem is reminiscent of 

the “L-shaped stochastic programs with recourse” that were popularized by Van Slyke 

and Wets (1969, p. 656). Specifically, the addition of nesting constraints over the set of 

budget scenarios gives the nested defense DAD problem a “block angular structure” 

(Birge & Louveaux, 2011, p. 183), except our formulation is somewhat more complicated 
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than the models seen in the literature. The extra complexity of the nested defense DAD 

problem resides in the fact that the outer minimization and maximization operators are 

both over integer variables. Our approach also departs classic stochastic programming 

theory because we do not represent the uncertain budgetary data as a random variable. 

 

Sets: 

    Uncertain defense and/or attack budget scenarios  
 

Data 

attackbudget  Attack budget in scenario ω. 

defensebudget  Defense budget in scenario ω. 

optimal    Optimal (non-nested) objective function value for budget ω. 
 

Decision Variables 

nS     Amount of unfulfilled demand at node n in budget scenario ω. 

ijdW      Binary; 1 if edge (i, j) chooses defense option d in scenario ω. 

ijX      Binary; 1 if edge (i, j) is attacked, 0 otherwise in scenario ω. 

ijdY      Amount of flow on arc (i, j) for defense d in budget scenario ω. 

 

1. Best Nested Defense as Measured by 1-Norm 

An intuitive way to measure the best nested defense is to add up all of the 

differences between a nested defense and the optimal defense for all possible budget 

scenarios. The best nested defense would then have the smallest sum over the budget 

scenarios. The 1-norm formulation of the nested defense DAD problem will find the best 

nested defense for a network with parameterized budget scenarios in terms of the sum of 

all deviations from optimality. 

 

DAD Problem with Nested Defense Formulation (1-norm) 

   1
( , )

,ijd ijd ij ijd jid jid ij jid n n
d D i j E n N

V c q X Y c q X Y S p optimal     

   

             (3.4a) 
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Objective Function: 

1,
min max min ,

ijd ijd nijW Y SX
V

  
  (3.4b) 

 
Subject to: 
 

( , ) (i, )

    , ,njd ind n n
d D n j A d D n A

Y Y S demand n N   
   

          (3.4c) 

 
( , )

                             ( , ) , , ,ijd jid ijd ijd
i j E

Y Y u W i j E d D   


        (3.4d) 

( , )

_                       ,ij ij
i j A

r X attack budget  


     (3.4e) 

0

: ( , )

_             ,ijd ijd
d D i j E
d d

h W defense budget  
 


      (3.4f) 

1                                                      ( , ) , ,ijd
d D

W i j E 


     (3.4g) 

1
0                                                    ( , ) , : , ,ijd ijdW W i j E d D d d         (3.4h) 

0                                                           ( , ) , , , ,ijdkY i j A d D k K        (3.4i) 

0                                                             , ,nS n N      (3.4j) 

{0,1}                                                      ( , ) , ,ijX i j E      (3.4k) 

{0,1}                                                      ( , ) , , .ijdW i j E d D       (3.4l) 

 

Equation (3.4a) defines the 1-norm as the sum across all budget scenarios of the 

difference between the nested defense and the optimal defense. Expression (3.4b) is the 

tri-level optimization objective to minimize the 1-norm for the DAD problem instance. 

Equation (3.4c) represents the balance of flow constraints for each node in the network 

under each budget scenario, with an elastic variable (S) compensating for unfulfilled 

demand. Equations (3.4d) are the bi-directional capacity constraints for each edge in the 

network, forcing total flow on an edge to be less than the maximum capacity for the edge 

under a defense option chosen for each budget scenario. Equation (3.4e) is a budget 

constraint on the attacker to ensure that the attacker can only attack as many edges as he 

or she can afford for each budget scenario. Equation (3.4f) is a budget constraint on the 

defender which ensures the amount of network defense stay within the budget scenario. 

Equation (3.4g) ensures each edge in the network can only have one defense option 

chosen for each budget scenario. Equation (3.4h) ensures the defenses chosen in one 
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budget scenario are also chosen in the next budget scenario. Equations (3.4i)-(3.4l) 

enforce variable types. 

The system of Equations (3.4) is a linear program, even though it might not 

appear to be initially. The attack (X) and flow (Y) decision variables are multiplied 

together, but one variable is maximized, and the other variable is minimized. 

Decomposition of the problem formulation results in a linear program. Nested 

decomposition procedures are similar to those discussed in Chapter I. 

Next, we perform decomposition of the nested defense DAD problem with 1-

norm objective. The first part of the decomposition is the AD subproblem. The AD 

subproblem primal version has a max-min objective function. In order to simplify the 

problem, we take the dual of the inner minimization operator model, since the flow 

decision variables (Y) are continuous. We define ‘modular decomposition’ of the AD 

subproblem to be the solution to a series of AD subproblems that each pertain to a 

specific defense and attack budget scenario (ω). 

 

Additional Decision Variables: 

ijd
   Dual variable for edge (i, j) with defense option d for budget scenario ω 

n
   Dual variable for node n for budget scenario ω. 

DUALZ   AD subproblem objective for each scenario ω. 

_SUB TOTALZ  Sum of all AD subproblem objectives in the set of budget scenarios Ω. 

 

Nested Defense AD Dual Subproblem, 1-Norm Objective: 

_
, ,

max ,
ij ijd n

SUB TOTAL DUAL
X

Z Z
  



  

    (3.5a) 

 

Subject to AD Subproblem Modular Decompositions: 

( , )

ˆ    ,DUAL n n ijd ijd ijd
n N i j E d D

Z demand u W optimal      
  

            (3.5b) 

 
Subject to: 
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  ( , ) , , ,i j ijd jid ijd ijd ij jii j i j i j i j
c q X X i j E d D         

   
            (3.5c) 

                                                                                 , ,n np n N      (3.5d) 

( , )

_                                             ,ij ij
i j A

r X attack budget  


     (3.5e) 

0                                                                                 , ,n n N       (3.5f) 

0                                                                              ( , ) , , ,ijd i j A d D        (3.5g) 

{0,1}                                                                              ( , ) , ,ijX i j E      (3.5h) 

 
( , ) : ( , ) :

0 1

1 1.

ijk ijk

ij ij
i j E i j E

X X

X X

 

 

    
 

        (3.5i) 

 

Expression (3.5a) of the AD decomposition uses a dual Integer Linear Program 

(ILP) formulation to transform the max-min structure of the AD subproblem to a 

maximization problem. Expression (3.5a) is the beginning of the modular decomposition 

of the original problem, because the objective is a summation of a series of AD 

subproblems for all of the budget scenarios. Equation (3.5b) shows that each budget 

scenario objective is a difference between the nested defense solution and the optimal 

solution. The optimal solution for each budget scenario was computed with the 

formulation in Chapter I and is included as data in this model. Equation (3.5c) is the 

constraint for each undirected edge under each budget scenario. Equation (3.5d) is the 

dual constraint for each node of the network for each budget scenario. Equation (3.5e) is 

the restatement of Equation (3.4e) in the decomposition. Equations (3.5f)-(3.5h) define 

variable types. Equation (3.5i) are the SEC needed for decomposition of the binary 

variables when attacks are repeated in iterations of the master problem. The subscript “k” 

in Equation (3.5i) refers to the iteration of the decomposition for the master problem. 

The system of Equations (3.5a-i) are decoupled over all of the budget scenarios 

(ω). The decoupling can be observed by noting that the defense variables (W) have fixed 

values, which is symbolized by the hats on these variables. There is no constraint within 

the AD subproblem that connects any budget scenario (ω) to any other budget scenario. 

Thus, each budget scenario (ω) is independent in the AD subproblem, which allows for 

the commutation of the summation and maximization operators in Equation (3.5a). 
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The nested defense DAD decomposition master problem takes the attacks (X) for 

each budget scenario (ω) as well as the AD subproblem objective function as an upper 

bound. The master problem links together all of the budget scenarios over a series of 

iterations in the outer decomposition. The result of each iteration of the nested defense 

DAD master problem is a potential lower bound and a set of defenses chosen (W) to 

begin the next iteration of AD subproblems. 

 

Additional Sets: 

k K   Decomposition iterations 
 

Additional Decision Variables (units): 

nkS   Amount of unfulfilled demand at node n in scenario ω for iteration k. 

ijkX    Binary; 1 if edge (i, j) is attacked in budget scenario ω for iteration k. 

ijdkY    Amount of flow on arc (i, j) for defense d in scenario ω for iteration k. 

DADZ   Difference of nested & optimal objective function values for scenario ω. 

_DAD TOTALZ  DAD master problem objective function value 

 

Nested Defense DAD Master Problem, 1-Norm Objective: 

_
, ,
min ,

ijd ijdk nk
DAD TOTAL DAD

W Y S
Z Z

  





    (3.5j) 

 
Subject to DAD modular decompositions: 

     
( , )

ˆ ˆ ,DAD ijd ijd ijk ijdk jid jid ijk jidk
d D i j E

Z c q X Y c q X Y optimal      
 

            (3.5k) 

0

: ( , )

_                         ,ijd ijd
d D i j E
d d

h W defense budget  
 


      (3.5l) 

( , ) ( , )

            , , ,njk ink nk n
d D n j A d D i n A

Y Y S demand n N k K   
   

           (3.5m) 

 
( , )

                                     ( , ) , , , ,ijdk jidk ijd ijd
i j E

Y Y u W i j E d D k K   


        (3.5n) 

1                                                                  ( , ) , ,ijd
d D

W i j E 


     (3.5o) 

1
0                                                           ( , ) , : , ,ijd ijdW W i j E d D d d         (3.5p) 

{0,1}                                                                  ( , ) , , ,ijdW i j E d D       (3.5q) 
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0                                                                         , , ,nkS n N k K       (3.5r) 

0                                                                       ( , ) , , , .ijdkY i j A d D k K       (3.5s) 

 

Expression (3.5j) is the decomposition master problem, which minimizes the sum 

of differences between the nested defense and optimal defense, for all budget scenarios. 

Equation (3.5k) represents the difference between the nested defense objective function 

value and the optimal value for each of the budget scenarios. Equation (3.5l) is the budget 

constraint on the defender for each of the budget scenarios. Equation (3.5m) represents 

balance of flow on the network for each of the budget scenarios. Equation (3.5n) enforces 

the maximum flow on each edge of the network when the defense option is chosen for 

each of the budget scenarios. Equation (3.5o) allows one defense option for each edge, 

for each budget scenario. Equations (3.5p) are the nesting constraints, which force the 

defenses chosen in a budget scenario (ω) to also be chosen in the next budget scenario 

(ω+1). Equations (3.5q-s) enforce variable types. 

2. Best Nested Defense as Measured by Infinity-Norm 

There are also other ways that an analyst may choose to define the best nested 

defense. The analyst may desire that the best nested defense must have the smallest 

possible difference from the optimal solution for any budget scenario. With this view, the 

objective function value for the nested defense may differ from the optimal value for 

many budget scenarios, but the largest difference is as small as possible. The infinity 

norm formulation of the nested defense DAD problem will find the best nested defense 

for a network with parameterized budget scenarios by keeping the largest difference 

between nested defense and optimal defense as small as possible. If the analyst desires to 

find the best infinity-norm nested defenses, he or she can modify the nested defense DAD 

problem as follows: 

 

Nested Defense DAD Problem Formulation (Infinity-Norm) 

   
( , )

max ,ijd ijd ij ijd jid jid ij jid n n
d D i j E n N

V c q X Y c q X Y S p optimal     

   
            (3.6a) 
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Objective function (Infinity-norm): 

,
min max min .

ijd ijd nijW Y SX
V

   
  (3.6b) 

 

Equation (3.6a) defines the infinity norm for the nested defense DAD problem 

and would replace Equation (3.4a) in the formulation of the nested defense DAD 

problem. Equation (3.6a) finds the maximum difference between the nested defense 

objective function value and the optimal defense objective function value over the set of 

all possible budget scenarios. Expression (3.6b) replaces (3.4b) in our formulation. 

Expression (3.6b) is a four level optimization problem that seeks to minimize the 

maximum difference between the nested defense and the optimal defense. The AD sub-

problem decomposition constraints of Equations (3.4c–l) remain for the infinity norm 

formulation. The decomposition of the infinity norm nested defense DAD problem has 

two changes from the 1-norm decomposition problem presented in the previous section. 

 

DAD Master Problem, Infinity-Norm Objective: 

_,
min ,DAD TOTALW Y

Z    (3.6c) 

 
Add the following constraint for DAD modular decomposition: 
 

_      .DAD TOTAL DADZ Z      (3.6d) 

 

Equation (3.6c) replaces Equation (3.5j) as the objective for the decomposition 

master problem. The decomposition problem as seen in Equations (3.5k-r) are the same 

in the infinity norm case, and Equation (3.6d) is added as an additional constraint to 

ensure the master problem objective function value is at least as large as the biggest 

difference between nested defense and optimal defense. Equation (3.6c) works along with 

Equation (3.6d) to minimize the maximum difference between nested defense and 

optimal defense over the set of all budget scenarios. 
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3. Best Nested Defense as Measured by 2-Norm 

The 2-norm is desirable as an objective for the parametric programming problem 

because it can be thought of increasing the amount of penalty to the objective function as 

the difference between the nested defense and optimal defense grows. However, the 2-

norm formulation of the nested defense DAD problem is more challenging to implement 

because it is a nonlinear quadratic program. Therefore, our formulation will use the 

square of the 2-norm in order to ensure we have a convex optimization problem. In our 

results, we report the square root of the solution to the quadratic parametric program in 

order to obtain the actual 2-norm value. 

 

Nested Defense DAD Problem Formulation (Squared 2-Norm) 

   
2

2

2
( , )

,ijd ijd ij ijd jid jid ij jid n n
d D i j E n N

V c q X Y c q X Y S p optimal     

   

 
         

 
    (3.7a) 

 
Objective function (Squared 2-Norm): 

2

2,
min max min .

ijd ijd nijW Y SX
V

  
  (3.7b) 

Equation (3.7a) defines the squared 2 norm for the nested defense DAD problem. 

Expression (3.7b) is the tri-level optimization objective to minimize the squared 2-norm 

for the nested defense DAD problem instance. The AD sub-problem decomposition 

constraints of Equations (3.4c–l) remain the same for the squared 2-norm formulation. 

Equation (3.7a) replaces (3.4a) and (3.7b) replaces (3.4b) when the squared 2-norm is the 

objective. The decomposition of the squared 2-norm nested defense DAD problem has 

two changes from the 1-norm decomposition problem presented in the previous section. 

 

AD Dual Subproblem, Squared 2-Norm Objective: 

2

_
, ,

max .
ij ijd n

SUB TOTAL DUAL
X

Z Z
  



 

   
 

   (3.7c) 
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Equation (3.7c) replaces Equation (3.5a) from the 1-norm AD subproblem 

formulation. Equation (3.7c) is the sum of the squared values of a series of AD 

subproblems, one for each budget scenario. The constraints in the AD dual subproblem 

for the 2-norm objective function are the same as those for the 1-norm AD dual ILP sub-

problem that are found in Equations (3.5b–i). 

 

DAD Master Problem, Squared 2-Norm Objective: 

 2

_
, ,
min .

ijd ijkd nk
DAD TOTAL DAD

W Y S
Z Z

  





    (3.7d) 

 

Equation (3.7d) replaces Equation (3.5j) from the 1-norm formulation. Equation 

(3.7d) makes the master problem a quadratic program. The remaining constraints are 

unchanged from the 1-norm DAD master problem, found in Equations (3.5l– r). 

4. Implementation on Test Network 

Our formulation can find the best possible nested defense in terms of the 1-norm, 

infinity norm, or squared 2 norm on the test network. The following examples illustrate 

how our formulations can find better nested defenses to DAD problem instances than the 

heuristic approaches. 

a. 1-Norm Formulation Example 

The first example is the 1-norm formulation for the nested defense DAD problem 

on the test network when the defense budget is parameterized, but the attack budget is 

known to be two units. Tables 19 and 20 summarize the different nested defenses chosen 

and objective function values for each nesting strategy. Table 17 shows us that the first 

defense chosen by the 1-norm parametric program is the same as the minimum starting 

point heuristic, but the other defenses chosen are different. Our formulation is able to 

exploit a weakness of the heuristic. The heuristic does not explore all equivalent optimal 

solutions every time the parameterized budget is incremented by one unit. 
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Table 19.   Objective Function Values in 1-Norm Nesting Example  

Nesting Strategy (Attack Budget = 2) Defense Budget 
 0 1 2 3 4 5 

Optimal Solution (not nested) 62 50 45 45 37 32 
Start point: Minimum Defense Budget 62 50 47 47 39 38 
Start point: Midrange Attack Budget 62 62 47 45 39 38 
Start point: Maximum Attack Budget 62 62 47 45 38 32 

1-norm Nesting Strategy 62 50 47 47 38 32 
 

Table 20.   Nested Defenses Chosen in 1-Norm Nesting Example 

Nesting Strategy 
Attack Budget =2 

Defenses Chosen at Defense Budget Level 
0 1 2 3 4 5 

Start point: 
Minimum 

Defense Budget 

None (2,7) (2,7) 
(7,8) 

(2,7) 
(7,8) 

(2,7) (7,8) 
(5,10) 

(2,7) (7,8) 
(5,10) (8,12)

Start Point: 
Midrange 

Defense Budget 

None None (5,10) (5,10) 
(7,8) 

(5,10) (7,8) 
(2,7) 

(5,10) (7,8) 
(2,7) (8,12) 

Start point: 
Maximum 

Defense Budget 

None None (5,10) (5,10) 
(8,12) 

(5,10)(8,12) 
(2,7) 

(5,10) 
(8, 12) (2,7) 

(11, 15) 
1-norm 

Nesting Strategy 
None (2,7) (2,7) 

(8,12) 
(2,7) 
(8,12) 

(2,7) (8,12) 
(5,10) 

(2,7) (8,12) 
(5,10) 
(13,14) 

 

Figure 36 presents a graphical display of the information contained in Table 19. In 

Figure 36, the blue diamonds that represent the 1-norm nested defenses appear to be the 

closest to the optimal solutions shown by the green stars. In order to prove that the 1-

norm is the nested defense that is closest to the optimal non-nested defense in this 

example instance, we show the difference vectors in Figure 37. We use the notation VMIN, 

VMID, and VMAX for the difference vectors associated with the heuristic starting points of 

minimum, midrange and maximum defense budgets, respectively. We define VL1 for the 

difference vector associated with the 1-norm parametric program. In Table 21, we 

compute the various difference norms associated with the difference vectors. Even 

though our parametric program in this example had the minimization of the 1-norm as its 
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objective, we observe in Table 21 that the resulting nested defense has the smallest 1-

norm, 2-norm and infinity norm of all of the nesting strategies tried in the example. 

 

Figure 36.  Test Network Nested Defense with 1-Norm Nesting Example 
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Figure 37.  Difference Vectors for 1-Norm Nesting Example 
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Table 21.   Difference Norms for 1-Norm Nesting Example 

Defense Budget Unknown 
Attack Budget =2 

VMIN VMID VMAX VL1 

Vector 1-norm: ǁVǁ1 12 22 15 5 
Vector 2-norm: ǁVǁ2 6.93 13.71 12.21 3 
Vector ∞-norm: ǁVǁ∞ 6 12 12 2 

 

b. Infinity Norm Formulation Example 

An example of nesting defenses based on the infinity norm formulation considers 

the test network with an unknown defense budget and attack budget fixed at four units. 

Tables 22 and 23 summarize the different nested defenses chosen and objective function 

values for each nesting strategy. Table 23 shows that the first defense chosen by the 

infinity norm parametric program is the same as the minimum and maximum heuristics. 

Table 22.   Objective Function Values for Infinity-Norm Nesting Example 

Nesting Strategy (Attack Budget = 4) Defense Budget 
 0 1 2 3 4 5 

Optimal Solution (not nested) 113 82 74 66 58 53 
Start point: Minimum Defense Budget 113 82 74 74 66 53 
Start point: Midrange Attack Budget 113 113 81 66 58 57 
Start point: Maximum Attack Budget 113 82 82 69 61 53 

Infinity-Norm Stochastic Program 113 82 79 71 63 55 
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Table 23.   Nested Defenses Chosen for Infinity-Norm Nesting Example 

Nesting Strategy 
Att. Budget =4 

Defenses Chosen at Defense Budget Level 
0 1 2 3 4 5 

Start point: 
Minimum 

Defense Budget 

None (10,13) (10,13) 
(9,13) 

(10,13) 
(9,13) 

(10,13) 
(9,13) (3,8) 

(10,13) 
(9,13) (3,8) 

(8,12) 
Start Point: 
Midrange 

Defense Budget 

None None (5,10) (5,10) 
(10,11) 

(5,10) 
(10,11) 
(1,5) 

(5,10) 
(10,11) 

(1,5) (6,10) 
Start point: 
Maximum 

Defense Budget 

None (10,13) (10,13) (10,13) 
(3,8) 

(10,13) 
(3,8) (8,12) 

(10,13) 
(3,8) (8,12) 

(9,13) 
Infinity-norm 

Stochastic 
Program 

None (10,13) (10,13) 
(7,8) 

(10,13) 
(7,8) (2,7) 

(10,13) 
(7,8) (2,7) 

(8,12) 

(10,13) 
(7,8) (2,7) 

(8,12) 
(9,13) 

 

Figure 38 presents a graphical display of the information contained in Table 22. 

The blue diamonds that represent the infinity norm nested defenses do not necessarily 

appear to be the closest to the optimal solutions shown by the green stars. In order to 

prove that the infinity-norm is the nested defense that is closest to the optimal non-nested 

defense in this example instance, we show the difference vectors in Figure 39. We define 

VL∞ as the difference vector associated with the infinity norm formulation. In Table 24, 

we compute the various difference norms for each nesting strategy. Table 24 shows that 

the infinity norm objective has the smallest infinity norm of all the nesting strategies in 

this example problem instance. Surprisingly, even though our formulation in this example 

had the minimization of the infinity norm as its objective, we observe that the resulting 

defense also has the smallest 2-norm all of the nesting strategies. 
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Figure 38.  Test Network Nested Defense with Infinity-Norm Nesting Example 

 

Figure 39.  Difference Vectors for Infinity-Norm Nesting Example 

Table 24.   Difference Norms for Infinity-Norm Nesting Example 

Defense Budget Unknown 
Attack Budget = 4 

VMIN VMID VMAX VL∞ 

Vector 1-norm: ǁVǁ1 16 42 14 17 
Vector 2-norm: ǁVǁ2 11.31 32.03 9.06 8.89 
Vector ∞-norm: ǁVǁ∞ 8 31 8 5 
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c. Squared 2-Norm Formulation Example 

An example based on the squared 2-norm formulation considers the test network 

with an unknown defense budget and attack budget fixed at five units. Tables 25 and 26 

summarize the different nested defenses chosen and objective function values for each 

nesting strategy. We observe the defenses chosen and the objective function value of the 

squared 2-norm formulation is the same as the maximum defense starting point heuristic. 

In this case, the heuristic was able to find the nested defense that is closest to the optimal 

non-nested defense as measured by the squared 2-norm. Our formulation is also able to 

prove that these defenses are the closest to the optimal non-nested defenses. 

Table 25.   Objective Function Values for Squared 2-Norm Nesting Example 

Nesting Strategy (Attack Budget = 5) Defense Budget 
 0 1 2 3 4 5 

Optimal Solution (not nested) 131 104 87 79 65 59 
Start point: Minimum Defense Budget 131 104 96 88 79 64 
Start point: Midrange Attack Budget 131 131 87 79 71 67 
Start point: Maximum Attack Budget 131 104 97 80 65 59 
Squared 2-Norm Stochastic Program 131 104 97 80 65 59 

Table 26.   Nested Defenses Chosen for Squared 2-Norm Nesting Example 

Att. Budget =5 
Nesting Strategy 

Defenses Chosen at Defense Budget Level 
0 1 2 3 4 5 

Start point: 
Minimum 

Defense Budget 

None (10,13) (10,13) 
(9,13) 

(10,13) 
(9,13) 
(8,12) 

(10,13) 
(9,13) 

(8,12) (7,8) 

(10,13) 
(9,13) (8,12)
(7,8) (2,7) 

Start Point: 
Midrange 

Defense Budget 

None None (5,10) (5,10) 
(8,12) 

(5,10) 
(8,12) (1,5) 

(5,10) (8,12)
(1,5) (11,15)

Start point: 
Maximum 

Defense Budget 

None (10,13) (10,13) 
(10,11) 

(10,13) 
(10,11) 
(7,8) 

(10,13) 
(10,11) 

(7,8) (2,7) 

(10,13) 
(10,11) (7,8)
(2,7) (9,13) 

Squared 2-norm 
Nesting Strategy 

None (10,13) (10,13) 
(10,11) 

(10,13) 
(10,11) 
(7,8) 

(10,13) 
(10,11) 

(7,8) (2,7) 

(10,13) 
(10,11) (7,8)
(2,7) (9,13) 

 

Figure 40 presents a graphical display of the information contained in Table 23. 

The blue diamonds that represent the 2-norm nested defenses appear to be the closest to 
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the optimal solutions shown by the green stars. In order to prove that the 2-norm is the 

best nested defense in this example instance, we show the difference vectors in Figure 41. 

We introduce VL2 for the difference vector associated with the squared 2-norm stochastic 

program. In Table 27, we compute the various difference norms associated with each 

nesting strategy. In Table 27 we report the actual 2-norm, which is the square root of the 

objective function value of the stochastic program. Table 27 shows that squared 2 norm 

objective and the heuristic of starting at maximum defenses both have the smallest 2-

norm of all the nesting strategies in this example. Surprisingly, even though our 

parametric program in this example has minimization of the squared 2-norm as the 

objective, it also has the smallest 1-norm and infinity norm. 

 

Figure 40.  Test Network Nested Defense with Squared 2 Norm Objective 
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Figure 41.  Difference Vectors for 2-Norm Nesting Example 

Table 27.   Difference Norms for 2-Norm Nesting Example 

Defense Budget Unknown 
Attack Budget = 4 

VMIN VMID VMAX VL2 

Vector 1-norm: ǁVǁ1 37 41 11 11 
Vector 2-norm: ǁVǁ2 19.57 28.79 10.04 10.04 
Vector ∞-norm: ǁVǁ∞ 14 27 10 10 

 

H. NESTED DEFENSES IN MAXIMUM FLOW PROBLEMS 

In a maximum flow network problem, the nesting of defenses against worst-case 

attack presents a different kind of problem. In this case, the network has an infinite 

supply of items at the source of the network, and an infinite demand for items at the 

destination of the network. The edges in the network are capacitated in the number of 

units that can travel over them. The DAD maximum flow problem is adapted from the 

basic maximum flow linear program that can be found in texts such as Ahuja et al. (1993, 

p. 168) and the network interdiction problem of Wood (1993). 

DAD Maximum Flow Problem Formulation: 

Sets: 

n N    Nodes of the network  
(Note: i and j are used as aliases for n) 
(Note: s and t are the source and terminal nodes in the network) 

( , )i j E   Undirected edges of the network  
( , )i j A   Directed arcs of the network 
d D    Defense plans available for undirected edges (i, j) 
 

Data: 
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ijdu    Maximum capacity of undirected edge (i, j) under defense plan d. 

ijdq    Penalty cost for travel on attacked arc (i, j) with defense plan d. 

ijr    Cost to attack undirected edge (i, j). 

ijdh    Cost to protect or build undirected edge (i, j) under defense plan d. 

attack_budget  Maximum attack budget. 
defense_budget Maximum defense budget. 
 

Decision Variables (units): 

V   Amount of maximum flow from source to destination (commodity units) 

ijdW   Binary; 1 if undirected edge (i, j) chooses defense option d, 0 otherwise. 

ijX   Binary; 1 if edge (i, j) is attacked, 0 otherwise. 

ijdY   Amount of flow on directed arc (i, j) for defense d. (commodity units) 

 

Formulation: 

   
,

( , )

max min max ,
ijijd ijd

ijd ijd ij jid jid ij
XW V Y

i j E d D

V q Y X q Y X
 

 
      

 
   (3.8a) 

( , ) ( , )

,sjd jsd
s j A d D j s A d D

Y Y V
   

       (3.8b) 

(t, ) ( ,t)

,tjd jtd
j A d D j A d D

Y Y V
   

        (3.8c) 

( , ) ( , )
, ,
, ,

0,ind njd
i n A d D n j A d D

i n s n j s
i n t n j t

Y Y
   

 
 

       (3.8d) 

                          ( , ) , ,ijd jid ijd ijdY Y u W i j E d D       (3.8e) 

( , )

_ ,ij ij
i j E

r X attack budget


    (3.8f) 

0

: ( , )

_ ,ijd ijd
d D i j E
d d

h W defense budget
 


     (3.8g) 

1                                        ( , ) ,ijd
d D

W i j E


    (3.8h) 

0                                              ( , ) , ,ijdY i j A d D     (3.8i) 

{0,1}                                        ( , ) ,ijX i j E    (3.8j) 

{0,1}                                       ( , ) , .ijdW i j E d D     (3.8k) 

 

The objective function (3.8a) expresses the three levels of optimization. The 

innermost maximization operator seeks to maximize the amount of flow on the network 
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after defenses and attacks are fixed. The middle operator has the objective of minimizing 

the amount of the resulting optimal flow by attacking edges for a given defense plan. The 

outer maximization operator chooses the optimal defense plan to maximize the worst-

case flow over all attacks. Equation (3.8b) balances flow from the source node to the rest 

of the network. Equation (3.8c) balances the flow from the network to the terminal node. 

Equation (3.8d) represents balance of flow equations for all other nodes in the network 

that are not the source or destination nodes. Equation (3.8e) represent capacity constraints 

for each edge in the network, forcing total flow on an edge to be less than the maximum 

capacity for the edge under a defense plan and defense option chosen. Equation (3.8f) is a 

budget constraint on the attacker to ensure that the attacker can only attack as many edges 

as he or she can afford. Equation (3.8g) is a budget constraint on the defender which 

ensures the amount of network defense stays within a budget. Equation (3.8h) ensures 

each edge can only have one defense option chosen. Equations (3.8i) – (3.8k) enforce 

variable types. 

For an example of nested defenses of the DAD problem in a maximum flow 

network, consider the network proposed by Alderson et al. (2013) in their appendix. 

There are six nodes in the network that have six parallel interconnecting directed arcs 

each. Node 1 is the source node and node 6 is the destination node. The arcs all have 

specific capacity limits. The network is shown in Figure 42. The undisturbed maximum 

flow of this network is limited to 36 units by the capacity of the directed arcs. The 

authors originally considered this network in an AD scenario in order to show that worst-

case attacks to an undefended network may not be nested. We extend their analysis of 

this network to a DAD problem that includes defenses. Suppose the attacker has an attack 

budget of five attacks, and the defense budget is subject to parametric analysis between 

zero and five units. Defending an arc in the network costs one unit of defense budget, and 

attacking an arc costs one unit of attack budget. We do not allow for the addition of new 

edges in this network. 
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Figure 42.  Maximum Flow Network. Adapted from Alderson et al. (2013) 

The nested defense in this maximum flow problem would be formed as follows. If 

the defender has a budget of zero, the attacker will attack the five arcs from node 1. This 

worst-case attack will reduce the maximum flow of the network to one unit. If the 

defender has a budget of one unit, then one of the high capacity arcs from node 1 will be 

defended. The worst-case attack against this one defense will be the five highest capacity 

arcs from node 2. The maximum flow with one defense is two units. If the defender has a 

budget of two units, one high capacity arc from node 1 and one high capacity arc from 

node 2 will be defended. The worst-case attack against these two defenses would be the 

five highest capacity arcs from node 3. The maximum flow with two defenses would be 

three units. For example, the scenario of defense budget two units and attack budget five 

units is shown in Figure 43. 
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Figure 43.  Maximum Flow Network with Defense Budget 2, Attack Budget 5 

The remainder of the parameterization of the network defense budget follows a 

pattern. When the defender has a budget of three units, one of each of the high capacity 

arcs from nodes 1, 2, and 3 are defended. The worst-case attack against a defense budget 

of three units would attack five of the highest capacity arcs from node 4. The maximum 

flow with three defenses would be four units. When the defender has a budget of four 

units, one of each of the high capacity arcs from nodes 1, 2, 3, and 4 are defended. The 

worst-case attack against a defense budget of four units would be to attack five of the 

highest capacity arcs from node 5. The maximum flow with a defense budget of four 

units would be five. When the defender has a budget of five units, one of each of the high 

capacity arcs from nodes 1, 2, 3, 4 and 5 are defended. The worst-case attack against five 

defenses will be to attack the five undefended arcs from node 1. The maximum flow with 

five defenses would be seven units. The results of the optimal defenses and worst-case 

attacks for the parameterized defense budget are summarized in Table 28. 
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Table 28.   Optimal Defenses and Attacks in Maximum Flow Network Example 

Defense 
Budget 

Arcs 
Defended 

Arcs 
Attacked 

Maximum 
Flow 

0 None 5 highest capacity arcs (1, 2) 1 
1 Arc (1, 2) with capacity 7 5 highest capacity arcs (2, 3) 2 
2 Arc (1, 2) with capacity 7 

Arc (2, 3) with capacity 8 
5 highest capacity arcs (3, 4) 3 

3 Arc (1, 2) with capacity 7 
Arc (2, 3) with capacity 8 
Arc (3, 4) with capacity 9 

5 highest capacity arcs (4, 5) 4 

4 Arc (1,2) with capacity 7 
Arc (2, 3) with capacity 8 
Arc (3, 4) with capacity 9 
Arc (4, 5) with capacity 10

5 highest capacity arcs (5, 6) 5 

5 Arc (1, 2) with capacity 7 
Arc (2, 3) with capacity 8 
Arc (3, 4) with capacity 9 
Arc (4, 5) with capacity 10
Arc (5, 6) with capacity 11

5 undefended arcs (1, 2) 7 

 

Table 28 shows that the defenses are nested because the defenses chosen for a 

defense budget of one unit are a subset of the defenses chosen for a defense budget of 

two units, and so on. We notice in this example maximum flow network that each nested 

defense systematically forms a backbone of highest capacity protected arcs for flow to 

travel from source node 1 to destination node 6. Each time the defense budget is 

increased, the new defense increases the resulting maximum flow of the network. The 

worst-case attack changes with each increase of the defense budget as it attempts to limit 

flow from source to destination as each new defense is added to the network. 

Proposition 3–6: Increasing the defense budget in a DAD maximum flow network has a 

non-decreasing effect on the objective function. 

Proof of proposition 3–6: DAD problems always assume that the attacker will 

make a worst-case attack. The addition of a defense in a DAD problem only occurs when 

a worst-case attack is changed to a new attack that has a smaller effect on the objective 

function value. By definition, no other attack can damage the objective function more 

than a worst-case attack. Therefore, the addition of a defense will result in a new worst-

case attack that is no worse than the previous worst-case attack. The resulting objective 
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function value from the addition of a defense will be at least as good as the objective 

function value before the addition of the defense, or the defense will not be added to the 

network. In a DAD maximum flow problem, the addition of a defense will change a 

worst-case attack that results in a maximum flow that is at least as great or greater than 

the flow on the network before the defense was included. 

I. NESTED DEFENSE SUMMARY 

This chapter investigates the implications of producing a list of prioritized 

defenses for a system when the defense and/or attack budget is not known when defense 

decisions must be made. We use the term nested defenses to refer to a monotonic 

sequence of sets, where each set of defenses for a particular budget scenario contains the 

set of defenses for the next smaller budget scenario. It is clear in the literature that the 

best defenses chosen for a defense budget of two units is usually not a subset of the 

defenses chosen for a defense budget of three units, and so on. 

We examine how nested defenses differs from the optimal set of defenses for any 

particular defense and attack budget scenario for the DAD minimum cost flow problem 

on the test network of Alderson et al. (2015). In particular, we quantify the cost of 

requiring a set of defenses to be monotonic. We examine various heuristic nesting 

strategies and compare their performance against known optimal solutions. Our heuristic 

algorithms choose an optimal defense for a particular budget scenario as an anchor point, 

and build nested defenses from it. The heuristic can either begin a nesting strategy from 

minimum, midrange or maximum budget values. We present three dimensional graphs to 

show the decision maker how an optimal defense differs from a heuristic nested defense 

in terms of system cost. 

We present five different methods for the analyst to assess how far the nested 

defense solution is from the optimal solution when parametric programming analysis is 

required for unknown budgetary parameters. Vector norm and matrix norm methods are 

from linear algebra; optimality gap analysis is adapted from statistics; and minimax regret 

and equal likelihood analysis are from decision theory. In each method, the analyst is 

looking for the smallest possible measurement since the objective of the system is to 
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minimize cost. For the test network with uncertain budgets, the clear winner of nesting 

starting points is maximum defense and attack budgets. However, there is no guarantee 

that all of the measurement procedures contained will agree on the same starting point as 

closest to optimal. We define the best nested defense to be the set of defenses that is 

closest to the optimal non-nested solution over the set of unknown budget scenarios. Our 

example of suboptimal nesting demonstrates how our heuristic approaches may not 

produce the best set of nested defenses for a DAD minimum cost flow problem. 

In order to find the best possible nested defense, we develop a new parametric 

programming formulation of the DAD minimum cost flow problem that accepts 

uncertainty in the defense or attack budgets. This new formulation works to minimize the 

overall system cost by simultaneously considering all unknown budget scenarios. Our 

formulation adds a block of constraints to enforce monotonicity of defenses across all 

budget scenarios. Our parametric programming formulation can find the nested defense 

that is closest to optimal based on three different measurement criteria. We demonstrate 

parametric programming formulations based on the 1-norm, squared 2-norm and infinity 

norm. We can conclude that our parametric programming formulation can generate the 

set of nested defenses that is as close as possible to the set of optimal non-nested 

solutions over all possible budget scenarios in terms of a vector norm measurement. 

Lastly, we briefly describe nested defenses for the DAD maximum flow problem. 

We formulate a DAD maximum flow model. Solution procedures for the DAD maximum 

flow model are analogous to those presented for the DAD minimum cost flow problem. 

We use a test network of Alderson et al. (2013) to describe nested defenses on simple 

DAD maximum flow network. We conclude that adding additional defenses to a DAD 

maximum flow network will not degrade network performance. 
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IV. DAD CONSTRAINED SHORTEST PATH PROBLEM 

A. PROBLEM DEFINITION  

1. Introduction 

The shortest path (SP) problem has been called “the simplest of all network flow 

problems” (Ahuja et al., 1993, p. 6). Fulkerson and Harding (1977) introduced the idea of 

attacking segments of a network to the SP problem by maximizing the length of a 

minimum shortest path. Golden (1978) furthered Fulkerson’s work and used the term 

network interdiction problem. Wood (1993) showed that the shortest path network 

interdiction problem is NP-complete. Improvements to the algorithm for solving the 

shortest path network interdiction problem were described by Israeli and Wood (2002). 

The simple SP problem becomes the much more difficult constrained shortest 

path (CSP) problem when an additional budgetary side constraint is added, and the 

special network structure of the original problem can no longer be exploited (Ahuja et al., 

1993, p. 599). Our research expands the complexity of the network interdiction problem 

by adding two new features. First, we expand the network interdiction problem to model 

constrained shortest paths. Second, we introduce the ability to defend segments of the 

network against attack. Even though the literature starts with and focuses on network 

flow problems, the algorithms in Alderson et al. (2011, 2014, & 2015) also apply to very 

general operator models, including those modeled as integer linear programming (ILP) 

problems. We picked CSP as the operator problem because it is a well understood 

specimen of an ILP that is almost a network flow problem. The addition of defenses to 

the network interdiction problem along with the addition of a side constraint creates the 

Defender-Attacker -Defender Constrained Shortest Path (DAD CSP) problem. 

The concept behind the DAD CSP model is similar to the general DAD model 

presented in Chapter I. For DAD CSP, our objective is to travel from source to 

destination at a minimum cost, and the additional budgetary constraint specifies that the 

total time to travel from source to destination must be within a time budget. The attacker 

desires to interdict some of the arcs of the network graph, limited by an attack budget. 
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Each attack increases the cost of traversing an arc by a fixed amount. The defender has 

the ability to prevent attacks on a subset of arcs in the network, based on a given defense 

budget. We do not consider adding new arcs as defenses in this chapter. Thus, the DAD 

CSP problem seeks to choose defenses to minimize the cost of the constrained shorted 

path resulting from a cost maximizing worst-case attack. 

We define the DAD CSP problem as follows. Given a network G = (N,A) with a 

prescribed start node s, destination node t, arcs with costs cij and travel times tij, and an 

overall time budget, T, the classical CSP problem seeks the least cost path from s to t 

such that the time expended on the path is no larger than T. The choice of arcs on the 

constrained shortest path is governed by binary variables (Y). This is the simplest version 

of the operator problem (4.1a), which we seek to embellish. If we add a distance penalty, 

qij, to each arc so that the length of an attacked arc (X) becomes cij + qij, we obtain the 

attacker problem (4.1b). If we add the ability to protect a subset of arcs from an attack 

(W) constrained by a defense budget, we obtain the defender problem (4.1c). The 

constraint sets for defenses (Ψ), attacks (Ξ) and paths (ϒ) in (4.1a)-(4.1c) are similar to 

those in Chapter I, and are suppressed for clarity. The operator model constraint set in 

(4.1c) is dependent upon the values of defense variables, and is written as ϒ (W). 

 
min ( ),
Y

f Y


  (4.1a) 

max min ( , ),
YX

f X Y


  (4.1b) 

( )
min max min ( , , ).
W Y WX

f W X Y
 

  (4.1c) 

 

The feasible region (ϒ (W)) is the same as Chapter I, except that it contains a 

single, additional side constraint limiting the time duration of any feasible path to a time 

budget (T), shown in Equation (4.1d). 

 

( , )

.ij ijd
i j A d D

t Y T
 

     (4.1d) 

 

The side constraint rescinds the network structure of the problem, and the path 

variables (Y) must then be treated explicitly as binary variables. Consequently, the 
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constraint set for the inner operator model (ϒ (W)) does not allow for the direct 

substitution of continuous variables for the binary path decision variables (Y) as seen in 

Chapter 1. The formulation in (4.1c) is extremely difficult to solve. 

In order to relieve the difficulty in (4.1c), we begin by isolating the operator 

model by fixing the values of the defense variables (W) and attack variables (X) with the 

use of the hat notation (^) in (4.1e). 

 

ˆ( )

ˆ ˆmin ( , , ).
Y W

f W X Y


  (4.1e) 

 

Ahuja et al. (1993, pp. 599–605) shows that Lagrangian relaxation of a side 

constraint can be used to regain the network structure of a CSP problem. The resulting 

heuristic algorithm can be converted to a competitive optimal algorithm as shown in 

Carlyle, Royset and Wood (2008). 

We relax some of the constraints of the operator model (ϒ (W)) by incorporating 

them into a modified objective function with a Lagrange multiplier (μ) that penalizes 

infeasibility. We use the tilde notation (~) to signify the modification of the objective 

function (f) and operator model constraint set (ϒ (W)) in Equation (4.1f). Specifically, we 

use ˆ( )W to represent the feasible region of a shortest path without the side constraint. 

We use f to represent the objective function with the penalized side constraint. 

 

ˆ ˆ( ) ( )
( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , , ) min ( , , , ) min ( , , ) .ij ijd
Y W Y W

i j A d D

L W X f W X Y f W X Y t Y T  
   

 
      

 
  

  (4.1f) 

 

We can solve the Lagrangian multiplier problem by choosing the value of the 

multiplier that maximizes the Lagrangian multiplier function (L), as shown in (4.1g) 

(Ahuja et al., 1993, p. 608). 

 

0

ˆ ˆmax ( , , ).L W X





  (4.1g) 
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The maximization of the Lagrange multiplier function (L) can be accomplished 

various ways. One way is to iteratively update the value of the Lagrange multiplier (μ) 

based on a subgradient calculation for a fixed defense (W) and attack (X). This is 

frequently coupled with a trust region method to force termination. See Ahuja et al. 

(1993, pp. 608–615) for a complete discussion. Since bounds of Lagrangian relaxation do 

not always converge, we employ a path enumeration technique of Carlyle, Royset and 

Wood (2008) to close the optimality gap. 

We incorporate the Lagrange multiplier function maximization of (4.1g) into the 

tri-level model to see the effect of the relaxation on the DAD CSP problem in (4.1h). 

 

( )0
min max max min ( , , , ) .
W Y WX

f W X Y



  

 
  

   (4.1h) 

 

An alternative method to maximize the Lagrange multiplier function (L) is to 

focus on the bi-level attacker-defender (AD) model. For the AD version of CSP where 

defenses (W) are fixed, we take advantage of the side by side relationship of the two 

maximization operators in (4.1h). We can characterize the Lagrange multiplier (μ) as a 

decision variable, and combine the maximization operators. We define the bi-level AD 

CSP Lagrange variable problem in (4.1i) to use the Lagrange multiplier (μ) as a decision 

variable. Essentially, the attacker gets to choose the arcs to attack (X) and the penalties 

(μ) that the operator incurs for infeasibility of the side constraint. 

 

ˆ, ( )
: 0

ˆmax min ( , , , ).
X Y W

f W X Y
 


 




   (4.1i) 

 

Since the relaxation of the side constraint allows us to treat the path choice 

variables (Y) as continuous variables, we can construct the dual formulation of the 

innermost minimization operator from (4.1i). The Lagrangian relaxation of bi-level AD 

CSP can be rewritten as a bi-level optimization model in (4.1j) by defining dual variables 

to represent the nodes (π) and arcs (α) of the network. We define (4.1j) as the Lagrange 

Variable dual ILP problem. 
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X, , ,
: 0

ˆmax ( , , , , ).f W X
 

 

  




   (4.1j) 

 

We can incorporate the Lagrange variable dual ILP problem into the tri-level 

model to see the effect of the relaxation on the DAD CSP problem in (4.1k). 

 

X, , ,
: 0

min max ( , , , , ).
W

f W X
 

 

  
 



   (4.1k) 

 

Expression (4.1k) is a relaxation of the original DAD CSP problem of (4.1c). 

Therefore, (4.1k) is not guaranteed to produce optimal solutions. Decomposition of (4.1k) 

over a series of iterations produces an AD sub problem in (4.1l) where the defense (W) is 

held constant. Decomposition produces a DAD master problem in (4.1m) where the 

attack (X), dual (α, π) and Lagrange (μ) variables are held constant. 

 

, , :,
: 0

ˆmax ( , , , , ),
X

f W X
 

 

  




   (4.1l) 

ˆ ˆˆ ˆmin ( , , , , ).
W

f W X   


   (4.1m) 

 

Decomposition produces valid lower bounds on the original DAD CSP problem 

instance because it incorporates Lagrangian relaxation. The decomposition in (4.1l) and 

(4.1m) produce heuristic solutions to DAD CSP instances more quickly than (4.1c) or 

(4.1h). We develop algorithms to incorporate the efficiencies within (4.1k) to produce 

optimal or provably near optimal solutions to DAD CSP instances more quickly than 

traditional nested decomposition techniques applied to (4.1c). 

Proposition 4–1. DAD CSP is NP-Hard. 

Proof of Proposition 4–1: When defense and attack budgets are restricted to zero 

units, DAD CSP reduces to the decision version of CSP, which is NP-Complete (Ahuja et 

al., 1993, p. 798). Therefore, DAD CSP is NP-Hard. 

Note that if the defense budget is restricted to zero units and the side constraint 

time budget is not binding, then DAD CSP reduces to the network interdiction SP 

problem, the decision version of which is also NP-Complete (Wood, 1993). Evaluating a 
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feasible defense requires solving an NP-Complete AD problem. Finding the optimal 

defense adds an additional layer of complexity on top of an NP-Complete problem. It is 

unlikely that DAD CSP is even in NP. 

Over the last few years, algorithms for solving instances of DAD SP have 

appeared in the literature. Alderson et al. (2011) gives a higher-level explanation for 

decomposition techniques for the tri-level optimization model for DAD SP. Alderson et 

al. (2014) provides a tutorial on the mathematical details for solving the tri-level DAD SP 

optimization model with decomposition procedures. To the best of our knowledge, the 

existing literature does not address the tri-level DAD CSP optimization problem, nor any 

solution procedures specifically developed for it. 

The intent of this chapter is to investigate the application of Lagrangian relaxation 

to the DAD model for the CSP problem. We apply the nested decomposition methods 

found in Alderson et al. (2014 and 2015) to solve DAD CSP problem instances on small 

to medium sized test networks. We develop new heuristic methods to quickly find an 

estimated solution to DAD CSP instance using Lagrangian relaxation of the side 

constraint. We combine the heuristic methods with nested decomposition to obtain 

provably optimal solutions faster than using nested decomposition by itself. We apply our 

methods to a real-world problem to demonstrate scalability to large networks. 

2. Problem Formulation 

We define the sets, data, decision variables and the formulation of the DAD CSP 

problem in system of Equations (4.2), using a structure similar to Alderson et al. (2014). 

Defender-Attacker-Defender Constrained Shortest Path (DAD CSP) Problem: 

Sets: 

n N    Nodes of the network. (Note: i and j are used as aliases for n) 
   (Note: node s is start of network; node t is end of network) 
( , )i j A   Arcs of the network 
d D   Defense choices for an arc. (Note: d0 is an undefended arc) 
k K    Iteration of inner decomposition 

' 'k K   Iteration of outer decomposition 
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Data: 

ijc    Cost to travel on arc (i, j). 

ijdh    Cost to defend arc (i, j) with defense d. 

ijdq    Penalty cost to travel on attacked arc (i, j) with defense d. 

ijr    Cost to attack undirected edge (i, j). 

ijt    Time required to traverse arc (i, j). 

_time budget   Maximum time allowed to traverse a path from node s to node t. 

_attack budget  Maximum budget for attacks on the network. 

_defense budget  Maximum budget for defenses for the network. 
 

Decision Variables: 

ijdW    1 if defense d is chosen for arc (i, j), 0 otherwise. 

ijX    1 if arc (i, j) is attacked, 0 otherwise. 

ijdY    1 if arc (i, j) with defense d is chosen for shortest path, 0 otherwise. 

'ijdkY    1 if arc (i, j) with defense d is chosen for path in outer iteration k’. 

ADZ    Objective function value of AD inner master problem 

DADZ    Objective function value of DAD Outer Master Problem 

 

Additional Fixed Values of Decision Variables Used in Decomposition: 

ˆ
ijX    1 when arc (i, j) is attacked in inner decomposition. 

'
ˆ

ijkX    1 when arc (i, j) is attacked in outer decomposition iteration k’. 

ˆ
ijdW    1 when arc (i, j) is assigned defense d in outer decomposition. 

îjdkY    1 when arc (i, j) with defense d is chosen for path in iteration k. 

 

DAD CSP Formulation: 

 
( , )

min max min ,
ijd ijdij

ij ijd ij ijdW YX
i j A d D

c q X Y
 

      (4.2a) 

 
Subject to: 

:( , ) :( , )

1 if   

0    \  ,  ,

1 if i  
ijd jid

j i j A d D j j i A d D

i s

Y Y i N s t

t   

  
     
   

     (4.2b) 
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                                          ( , ) , ,ijd ijdY W i j A d D     (4.2c) 

( , )

_ ,ij ij
i j A

r X attack budget


    (4.2d) 

0

( , ) :

_ ,ijd ijd
i j A d D

d d

h W defense budget
 



     (4.2e) 

1                                         ( , ) ,ijd
d D

W i j A


    (4.2f) 

( , )

_ ,ij ijd
i j A d D

t Y time budget
 

     (4.2g) 

 0,1                                          ( , ) , ,ijdY i j A d D     (4.2h) 

 0,1                                          ( , ) ,ijX i j A    (4.2i) 

 0,1                                          ( , ) , .ijdW i j A d D     (4.2j) 

 

The objective function (4.2a) expresses the three levels of optimization. The 

innermost minimization operator seeks to minimize the cost of a path through the 

network after defenses and attacks are fixed. The middle maximization operator has the 

objective of maximizing the cost of the resulting path through the network, by attacking 

arcs for a given defense plan. The outer minimization operator chooses the optimal 

defense plan to minimize the worst-case cost over all attacks. Equation (4.2b) represents 

balance of flow equations for each node in the network, where one unit departs the start 

node (s), and one unit arrives at the terminal node (t). Equation (4.2c) only allows an 

edge to be considered for the path with a defense option chosen. Equation (4.2d) is a 

budget constraint on the attacker to ensure that the attacker can only attack as many edges 

as he or she can afford. Equation (4.2e) is a budget constraint on the defender which 

ensures the amount of network defense stays within a budget. Equation (4.2f) ensures 

each edge of the network can only have one defense option chosen. Equation (4.2g) is the 

“side constraint” that changes the SP problem to a CSP problem. Equation (4.2g) ensures 

the path chosen must have a total time less than the overall time budget. Equation (4.2g) 

destroys the special network structure of the DAD problem that had been exploited in 

previous chapters. Because of the side constraint, Equation (4.2h) must restrict the 

decision variable for path segments to binary values, which is the reason that the CSP 

problem is much more difficult than the SP problem. The binary decision variable 
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restriction present in Equation (4.2h) can be relaxed in the SP problem, but it cannot be 

relaxed in the CSP problem. Equations (4.2i) and (4.2j) enforce binary restrictions. 

At a minimum, we have two possible defense choices for each arc. Defense 

choices in our application either leave an arc undefended (d0) or choose to defend an arc 

(d1). Our development of DAD CSP is based on two defense choices. However, our 

formulation can support more than two defense choices. Note that we have to choose 

some defense for every arc, which includes no defense (d0). In this formulation, it is 

technically possible to attack an arc that has been defended. But, we choose the penalty 

(q) for traversing a defended arc (d1) to be zero units, which makes it unattractive to 

attack a defended arc. 

3. Regular Nested Decomposition Approach 

The only method in the literature available for solving CSP DAD in system of 

Equations (4.2) is to perform a nested decomposition that is somewhat similar to the 

Benders (1962) algorithm (Alderson et al. 2011 & 2014). The significant difference 

between our decomposition and Benders (1962) decomposition is that our sub problem 

contains discrete variables. Thus, our nested decomposition must make the repeated use 

of solution elimination constraints (SEC) to prevent cycling. For a discussion of anti-

cycling in these algorithms, see Alderson et al. (2014). The nested decomposition of CSP 

DAD is detailed in system of Equations (4.3). The nested decomposition features an inner 

and outer decomposition, where the inner decomposition addresses the inner 

minimization of path variables (Y) and middle maximization of attack variables (X), and 

the outer decomposition takes the result of the inner decomposition and addresses the 

outer minimization of defense variables (W). The nested decomposition requires the 

introduction of new sets that govern the iterations of both inner and outer decomposition, 

and new variables representing paths for each iteration of outer decomposition. We use a 

hat (^) on a variable to represent a fixed value that is referenced during decomposition. 

We refer to this nested decomposition technique as regular nested decomposition in order 

to distinguish it from other methods that we will introduce later in the chapter. 
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The inner decomposition AD sub problem takes a fixed defense (Ŵ ), a fixed 

attack ( X̂ ) and solves for the minimum cost path (Y) through the network. 

a. CSP Inner Decomposition AD Subproblem Formulation: 

 
( , )

ˆmin ,
ijd

ij ijd ij ijd
Y

i j A d D

c q X Y
 

      (4.3a) 

Subject to: 
 

:( , ) :( , )

1 if   

0    \  ,  ,

1 if   
ijd jid

j i j A d D j j i A d D

i s

Y Y i N s t

i t   

  
     
   

     (4.3b) 

( , )

ˆ                                               ( , ) , ,ijd ijd
i j A

Y W i j A d D


     (4.3c) 

( , )

_ ,ij ijd
i j A d D

t Y time budget
 

     (4.3d) 

 
( , ) : ( , ) :
ˆ ˆ0 1

1 1               ,

ijdk ijdk

ijd ijd
i j A d D i j A d D

Y Y

Y Y k K
   
 

         (4.3e) 

 0,1                                                      ( , ) , .ijdY i j A d D     (4.3f) 

 

The objective function (4.3a) minimizes the cost of a shortest path based on fixed 

attacks to the network. Equation (4.3b) restates Equation (4.2b). Equation (4.3c) 

resembles Equation (4.2c), except the defense variables are now fixed values. Equation 

(4.3d) restates Equation (4.2g). Equation (4.3e) is a SEC to prevent cycling in the inner 

decomposition. Equation (4.3e) is a SEC that is only activated in inner decomposition 

iterations when a choice of path variables (Y) is repeated from a previous iteration. 

Equation (4.3f) restates (4.2h). 

The inner decomposition AD master problem takes a fixed defense (Ŵ ) and a list 

of fixed paths ( Ŷ ) for each iteration (K) to solve for the worst-case attack (X) that 

maximizes the length of the shortest path. During each iteration (K) of inner 

decomposition, the AD sub problem takes a set of fixed defense variables (Ŵ ) and fixed 

attack variables ( X̂ ) and determines a shortest path through the network. The choice of 

shortest path variables (Y) for the current iteration (K) become an input to the AD master 
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problem. The cost associated with the shortest path updates the inner decomposition 

lower bound if it is the highest cost of all iterations. 

b. CSP Inner Decomposition AD Master Problem Formulation: 

,
max ,

AD ij
AD

Z X
Z   (4.3g) 

Subject to: 
 

 
( , )

ˆ             ,AD ij ijd ij ijdk
i j A d D

Z c q X Y k K
 

        (4.3h) 

( , )

_ ,ij ij
i j A

r X attack budget


    (4.3i) 

 
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( , ) : ( , ) :
ˆ ˆ0 1

1 1                         ' ,

ijk ijk

ij ij
i j A i j A

X X

X X k K
 
 

       (4.3j) 

 0,1                                                    ( , ) .ijX i j A    (4.3k) 

 

The objective function (4.3g) and (4.3h) work together to form the inner master 

problem decomposition to maximize the cost of fixed shortest paths by the choice of 

attack variables (X). Equation (4.3i) restates Equation (4.2d). Equation (4.3j) is a SEC to 

prevent cycling in the outer decomposition. Equation (4.3j) is only activated in outer 

decomposition iterations when a choice of attack variables (X) is repeated from a 

previous iteration of outer decomposition. Equation (4.3k) restates Equation (4.2i). 

The AD master problem next determines a choice of attack variables (X) to 

maximize the cost of the shortest path. Each iteration of the AD master problem 

represents an opportunity to update the inner decomposition upper bound. When the inner 

decomposition lower bound is updated, the attack associated with that iteration is saved 

as the best known attack. We refer to this set of best attack variable values as X star (X*). 

The best attack result is then input to the DAD outer decomposition master problem. The 

cost of the best attack updates the upper bound of the outer decomposition. 

The outer decomposition master problem takes a list of fixed attacks over a series 

of outer iterations ( '
ˆ

kX ) and solves for the best defense (W) and the resulting path for 

each outer iteration (Yk’) to minimize the shortest path for the original problem instance. 
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c. Outer Decomposition DAD Master Problem Formulation: 

' ', ,
min ,

DAD ijdk ijdk
DAD

Z W Y
Z   (4.3l) 

Subject to: 
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d D

W i j A
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i j A d D

t Y time budget k K
 

      (4.3q) 

 ' 0,1                                                   ( , ) , , ' ,ijdkY i j A d D k K      (4.3r) 

 0,1                                                    ( , ) , .ijdW i j A d D     (4.3s) 

 

The objective function (4.3l) and (4.3m) work together to form the outer 

decomposition master problem to minimize the cost of shortest paths with fixed attacks 

by the choice of defense and path variables. Equation (4.3n) and (4.3o) are similar to 

Equations (4.2b) and (4.2c), except that iteration subscripts “k” have been added to the 

path variables for each round of outer decomposition. Equation (4.3p) restates Equation 

(4.2f). Equations (4.3q) and (4.3r) are similar to Equations (4.2g) and (4.2i), respectively, 

but the addition of subscript “k” allows for different path variables for each iteration of 

outer decomposition. Equation (4.3s) restates Equation (4.2j). 

The outer decomposition works through a set of iterations (K’) until a stopping 

criterion is reached. For each outer decomposition iteration, the best attack (X) from the 

inner decomposition is used as a fixed input to update an outer lower bound. The outer 

decomposition then determines a choice of defense variables (W) to create a shortest 

path. The shortest path variables (Y) are dependent upon a fixed attack (X) for each outer 

iteration (K’). The outer decomposition lower bound may be updated every time defense 

variables (W) find a shorter (lower cost) path. When the outer decomposition lower 
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bound changes, the values of the defense variables used in that iteration are saved as the 

best defense. We refer to the best defense as W star (W*). The outer decomposition 

continues until the outer upper and lower bounds match. The result of the outer 

decomposition is the choice of defenses (W). 

The algorithm for implementing regular nested decomposition of DAD CSP is 

similar to the DAD minimum cost flow problem presented in Chapter I. The only 

significant algorithmic difference between regular nested decomposition of DAD CSP vs. 

DAD minimum cost flow that of Chapter I is that the operator model decision variables 

(Y) are now restricted to binary values. This difference means that SEC that were present 

in outer decomposition must now also appear in the inner decomposition to prevent 

cycling. We present the extra SEC in (4.3e). The algorithm of Chapter I can be adapted 

mutatis mutandis for the decomposition of the DAD CSP problem in system of Equations 

(4.3). Regular nested decomposition of system of Equations (4.3) can solve small to 

medium sized instances of DAD CSP optimally. Large-scale DAD CSP problem 

instances may struggle to find optimal solutions in a reasonable amount of time. 

The number of binary variables in a DAD CSP problem instance can be quite 

large, since the binary decision variables for path (Y), attack (X) and defense (W) apply 

to every arc in the network. The total number of binary variables in a problem is three 

times the cardinality of the arc set. If we let “m” represent the number of arcs in the 

network, then the total number of binary variables in the DAD CSP problem is 3m, as 

shown in Equation (4.3t). Later sections of the chapter are devoted to finding methods 

that reduce the number of binary variables in the DAD CSP problem by taking into 

account the structure of the side constraint. 

 
DAD CSP total binary decision variables = 

 defense variables +  attack variables +  path choice variables = 3m m m m  (4.3t) 
 

B. ARTIFICIAL TEST NETWORKS 

We created two networks for testing the DAD CSP problem. The first is a small 

instance derived from Ahuja et al. (1993) for testing purposes and to understand the 
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sequence of solutions examined by our algorithms. The second test instance is a medium-

sized mesh-like network with random data to test the limits of computation. 

The first test network is a small six node textbook example shown in Figure 44 

(Ahuja et al., 1993, p. 599). Each directed arc has two associated data values. The first 

value is the cost for traveling on the arc and the second value is the time required to 

traverse the arc. This network was chosen because it has been studied in the literature and 

for characteristics that will be used in a later section. The starting node is node 1 and the 

terminal node is node 6. The shortest path in the network is to traverse the arcs (1, 2), (2, 

4), (4, 6), with a cost of three units and usage of 18 time units. In order to make the side 

constraint meaningful, we must choose a time budget less than 18 units. A time budget of 

14 units is used with this network, which makes the original shortest path infeasible. 

 

Figure 44.  Six Node Test Network. Adapted from Ahuja et al. (1993, p. 599) 

The second test network is a medium size grid network based on the CSP problem 

of Royset, Carlyle and Wood (2009). It is a grid with 50 nodes and 124 directed arcs, 

shown in Figure 45. This network is acyclic since each of the directed arcs points from 

left to right. The values of the arc cost and time are random integers uniformly distributed 

between one and ten, inclusive. The random values are obtained from the random integer 

generator found in Python programming software version 2.7 with a seed value of one. 

The arc costs and time values are not shown in Figure 45 for the sake of clarity. The 
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randomly assigned cost and time values for the arcs for the 50 node grid network are in 

Table 29. All of our tests are based on the costs and times in Table 29. 

 

Figure 45.  50 Node Test Network 
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Table 29.   Arc Cost and Time Values for 50 Node Test Network 

(i, j) cij tij (i, j) cij tij (i, j) cij tij (i, j) cij tij 
1,2 2 9 14,23 8 7 1,26 1 1 36,37 9 10 
2,3 8 3 15,8 4 5 26,19 8 3 36,45 8 6 
2,11 5 5 15,16 6 8 26,27 2 7 37,30 4 4 
3,4 7 8 15,24 6 4 26,35 4 1 37,38 3 7 
3,12 1 1 16,9 5 1 27,20 2 6 37,46 5 2 
4,5 9 5 16,17 1 8 27,28 2 3 38,31 2 7 
4,13 8 1 16,25 10 6 27,36 8 5 38,39 3 5 
5,6 5 8 17,50 4 2 28,21 4 5 38,47 4 9 
5,14 3 10 1,18 6 10 28,29 1 4 39,32 9 1 
6,7 10 1 18,11 8 6 28,37 5 2 39,40 3 4 
6,15 1 6 18,19 9 3 29,22 2 9 39,48 10 8 
7,8 10 4 18,27 6 10 29,30 6 3 40,33 4 3 
7,16 3 5 19,12 6 5 29,38 7 9 40,41 7 9 
8,9 1 3 19,20 3 6 30,23 1 1 40,49 10 4 
8,17 5 5 19,28 10 1 30,31 2 8 41,50 9 7 
9,50 3 3 20,13 8 9 30,39 2 8 1,42 5 10 
1,10 3 5 20,21 9 8 31,24 7 6 42,35 3 8 
10,3 3 1 20,29 9 6 31,32 3 10 42,43 1 2 
10,11 9 6 21,14 6 5 31,40 8 6 43,36 10 3 
10,19 7 2 21,22 1 9 32,25 3 7 43,44 8 7 
11,4 10 9 21,30 6 2 32,33 4 6 44,37 9 4 
11,12 2 4 22,15 6 5 32,41 4 7 44,45 4 3 
11,20 8 8 22,23 4 4 33,50 1 3 45,38 9 7 
12,5 10 5 22,31 6 7 1,34 10 9 45,46 10 9 
12,13 9 7 23,16 7 5 34,27 4 9 46,39 2 6 
12,21 4 6 23,24 1 3 34,35 4 10 46,47 2 1 
13,6 9 9 23,32 2 6 34,43 8 5 47,40 1 9 
13,14 6 6 24,17 9 8 35,28 3 1 47,48 8 9 
13,22 1 3 24,25 8 9 35,36 9 1 48,41 4 7 
14,7 8 5 24,33 3 9 35,44 9 10 48,49 8 4 
14,15 2 6 25,50 7 1 36,29 6 2 49,50 6 3 

 

The shortest cost path in this network has a cost of 17 distance units and a usage 

of 43 time units. Conversely, the shortest time path in this network uses 18 time units 

with cost of 42 distance units. Note that the shortest path cost of 17 distance units is much 

different than the quickest path cost of 42 distance units. Figure 46 plots of the shortest 

cost path with a solid pink line and the shortest time path with a brown dashed line for the 
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50 node grid test network. Our goal for testing DAD CSP with the 50 node test network 

will be to minimize cost with a time budget as the side constraint. In our tests, we 

minimize cost and use a side constraint time budget of 40 units with this network so that 

the side constraint is meaningful. Note that a time budget of 40 time units renders the 

unconstrained shortest cost path infeasible because that path requires 43 time units. There 

are many non-shortest paths with total time values below 40 units. We choose 40 units 

because a reasonable number of feasible paths may be considered by the defender and 

attacker, and it also forces the side constraint to be binding. 

 

Figure 46.  Shortest Cost and Shortest Time Paths for 50 Node Test Network 

Our tests with these networks were conducted on Windows 7 computers with dual 

Xeon E-7 18 core processors operating at 2.3 GHz, with 128 GB of RAM and solid state 

hard drives. We use the General Algebraic Modeling System (GAMS) modeling software 

version 24.5 (GAMS, 2016) with the Industrial Business Machines (IBM) CPLEX solver 

version 12.6 (IBM, 2016). The algorithmic decomposition improvements described in 

later sections of this chapter are implemented with Python programming language 

version 2.7 interacting with the GAMS optimization software. 



 148

For both test networks we impose a penalty cost (q) of 25 units for traveling on an 

undefended (d0) and attacked arc in the shortest path. A penalty of 25 units represents 2.5 

times the maximum cost of any arc in the 50 node test network. The penalty cost (q) is 

zero units for traveling on undefended arcs that are not attacked. Furthermore, the penalty 

cost (q) is zero units for traveling on a defended arc, regardless of whether it is attacked 

or not. Zero penalty (q) for travel on a defended arc (d1) eliminates the incentive for an 

attack to occur on a defended arc. We choose the cost of attacking any arc to be one unit 

of attack budget. We choose the cost of defending any arc to be one unit of defense 

budget. We set the tolerances for inner and outer decompositions to be less than one unit, 

which forces our algorithms to converge on the optimal solution. We revisit setting 

solution tolerances later in the chapter when we test a large real world network, for which 

optimal solutions are not practical. 

The regular nested decomposition in system of Equations (4.3) can solve 

instances of DAD CSP for both test networks. We observe from both test networks that 

the solution time for “regular” nested decomposition of DAD CSP increases as the size of 

the defense and attack budgets increase. The size of the network in terms of the number 

of nodes and arcs also plays a significant role, with larger networks taking longer time to 

solve than smaller networks. The 50 node grid test network shows examples where the 

time to obtain a solution to the DAD CSP problem becomes longer as the budget scenario 

increases. Figure 47 plots the amount of solution time required in nested decomposition 

for various defense and attack budget scenarios on the 50 node grid test network. 



 149

 

Figure 47.  Nested Decomposition Solution Times in 50 Node Test Network 

We can see clear evidence in Figure 47 that the nested decomposition solution 

begins to take a larger amount of time as the defense and attack budgets increase. With 

the 50 node grid test network, problem instances with an attack budget of seven units 

have a dramatic increase in solution time than instances with an attack budget of six 

units. A similar, but less dramatic, effect occurs when changing the problem instance 

attack budget from six to five units. Smaller attack budgets of four units or less appear to 

have a negligible effect on the time to obtain a solution. Additionally, increasing the 

defense and attack budgets to eight units appears to be a tipping point in the ability for 

our regular nested decomposition implementation in GAMS optimization software to find 

a solution to DAD CSP. We found that the DAD CSP problem instance for the 50 node 

test network with defense and attack budgets of eight units can take over 24 hours to 

compute without convergence on an optimal solution in regular nested decomposition. 
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This chapter explores methods to either estimate or solve DAD CSP problem 

instances faster than the regular nested decomposition technique. The challenge is to find 

an algorithm improvement to regular nested decomposition that can speed up the amount 

of time to get an answer to a DAD CSP problem instance. 

C. LAGRANGIAN RELAXATION OF OPERATOR MODEL 

In this section, we seek to transform the formulation of DAD CSP to reduce the 

number of binary decision variables in the problem. The reduction in the number of 

binary decision variables may improve the ability of the problem to solve more quickly. 

We focus on the operator model, and relax the path choice variables (Y) to continuous 

variables through the technique of Lagrangian relaxation. 

Lagrangian relaxation can be used to transform a difficult integer or binary 

programming problem into a simpler model by relaxing the difficult constraints and 

adding a term in the objective to penalize infeasibility (Fisher, 1981). The DAD CSP 

problem is a difficult binary program to solve because the side constraint time budget 

eliminates the special network structure of the problem. Fisher states that moving the side 

constraint into the objective function “produces a Lagrangian problem that is easy to 

solve and whose optimal value is a lower bound (for minimization problems) on the 

optimal value of the original problem” (1981, p. 1). We use the technique of Lagrangian 

relaxation described in Ahuja et al. (1993, pp. 599–614) to move the side constraint time 

budget of Equation (4.2g) into the objective function. We introduce a Lagrange multiplier 

(μ) that is used as a parameter to penalize violation of the side constraint budget. We find 

the best value for the Lagrange multiplier (μ) through a series of iterations of a new inner 

sub problem. We update the value of the Lagrange multiplier (μ) after each iteration. 

 

DAD CSP Operator Model with Lagrangian Relaxation: 

Additional Sets 

p P    Iterations of Lagrangian relaxation (Note: |P| = 25 for our test networks) 
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Additional Parameters 

p   Value of Lagrange multiplier in iteration p. 

 

Additional Decision Variables 

pZ   Objective function value during Lagrangian relaxation iteration l. 

 

 

Formulation 
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Equation (4.4a) shows the time budget constraint moved to the objective function 

with Lagrange multiplier (μ). Equations (4.4b) and (4.4c) are the same as (4.3b) and 

(4.3c). Equation (4.4d) is very different from its counterpart Equation (4.3f) because the 

time budget constraint has been moved to the objective function. The network structure 

of the problem has been regained, and the path variables (Y) may be treated as 

continuous variables. The network structure only allows integer solutions to occur, even 

though continuous variables are permitted. Equation (4.4e) restates Equation (4.3e). 

The classic Lagrangian relaxation iterative model selects values for the Lagrange 

multiplier (μ) in order to maximize the lower bound of the operator model, as discussed 

in the introduction section. The solution to the Lagrangian relaxation of the inner sub 

problem of Equations (4.4a-e) occurs over a series of iterations (P) until a stopping 
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criterion is reached. The Lagrange multiplier (μ) begins with a value of zero for the first 

iteration. The multiplier is updated to a new value for subsequent iterations. The update 

of the Lagrange multiplier (μ) is essentially an adaptation of “Newton’s method” for 

solving systems of equations in sub gradient optimization (Ahuja et al., 1993, p. 612). 

Lagrangian Relaxation Iterative Model: 

Additional Parameters: 

_Lag UB  Upper bound achieved in iterative Lagrangian relaxation 

p   Subgradient of the remaining time budget on a path in iteration l.  

p   Scalar multiplier for Lagrangian bounding heuristic in iteration l. 

p  Step length for update amount to Lagrange multiplier in next iteration. 

 

Formulation: 
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We have applied the derivation of Ahuja et al. (1993) for Equations (4.4f-j) to 

update the Lagrange multiplier. Equation (4.4f) identifies the Lagrangian multiplier 

function (L), as defined in the introduction section. The objective function (4.4g) 

maximizes the Lagrangian multiplier function (L) through an iterative search for the best 

value of the multiplier (μ). Each increase in the value of the iterated solution to the 

system of Equations (4.4) updates the lower bound on the Lagrangian relaxation of the 

problem. If the solution of the current iteration of system of Equations (4.4) also satisfies 

the original side constraint of Equation (4.2g), then the upper bound of the Lagrangian 

relaxation can be updated. Equation (4.4h) represents the difference between the amount 

of time used on the shortest path and the time budget in the side constraint. Ahuja et al. 
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(1993) refer to this difference as a subgradient norm to update the Lagrange multiplier. 

After the inner decomposition sub problem is solved, we take the final values of the 

shortest path variables (Y) as fixed values to compute the sub gradient norm. If the sub 

gradient norm is positive, then the side constraint is violated. Likewise, if the sub 

gradient norm is negative, then the side constraint holds. Equation (4i) represents a step 

length for how much the value of the Lagrangian multiplier should be updated in the next 

iteration of Lagrangian relaxation. Equation (4.4i) approximates the step size of the 

change of the Lagrange multiplier (μ) (Fisher, 1981). Equation (4.4i) is a heuristic 

approach to Newton’s method because the actual optimal value of the Lagrangian 

relaxation is not known in advance (Ahuja et al., 1993, p. 613). The scalar multiplier (λ) 

in the numerator of Equation (4.4i) can be any value, and we choose to start with 0.8 as 

suggested by Ahuja et al. (1993). The value of the scalar multiplier is reduced in half if 

the lower bound is not improved over three iterations of relaxation. In the heuristic, the 

current upper bound represents the best found feasible solution that does not violate the 

time budget. Equation (4.4j) is the update mechanism for the Lagrange multiplier (μ). 

Equation (4.4j) takes the positive part of the previous Lagrange multiplier plus the 

product of the step length and sub gradient norm, so that the value of the Lagrange 

multiplier is never negative. 

Since no standard stopping criterion exists for the heuristic of Equation (4.4i), we 

terminate the updating of the Lagrange multiplier after 25 iterations if the upper and 

lower bounds do not match (Ahuja et al. 1993, p. 613). The choice of 25 iterations is 

arbitrary, but we observe in every case that almost no change to the solution occurs past 

this point. The Lagrangian upper bound is updated whenever the calculation in Equation 

(4.4h) yields a negative number, and the shortest path cost is lower than the current upper 

bound. The Lagrangian lower bound is updated when the shortest path cost is larger than 

all other iterations, regardless of the value of Equation (4.4h). 
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D. IMPROVEMENTS TO THE INNER DECOMPOSITION ALGORITHM 

This section finds algorithmic improvements to the inner decomposition of DAD 

CSP with Lagrangian relaxation. Inner decomposition is based on fixed values of the 

defense variables (Ŵ ). 

1. Lagrange Variable Problem Transformation  

We devise a novel approach to calculate the best value of the Lagrange multiplier 

(μ) during inner AD decomposition. Our innovative approach eliminates the iterative 

process to determine the value of the Lagrange multiplier (μ) and decreases the amount of 

time needed to obtain a lower bound on the problem solution. Traditionally, the Lagrange 

multiplier (μ) is found via the iterative process shown in the previous section. 

We change the Lagrange multiplier (μ) from a parameter that is determined 

iteratively, to a decision variable to be maximized. Another way to think about this 

change is to imagine that the attacker of the network gets to pick both the worst-case 

attack to the network as well as the value of the Lagrange multiplier (μ) that will be used 

by the defender. The attacker can choose a value of the Lagrange multiplier (μ) that 

maximizes the effect of his worst-case attack on the operation of the network. We call 

this change to the AD CSP problem the Lagrange Variable AD CSP problem. 

Because Lagrangian relaxation is incorporated into the problem formulation, the 

solution obtained can be infeasible for the original side constraint. Note that the time 

budget is the side constraint in our formulation. The infeasibility possibility means that 

the Lagrange variable problem should not be used by itself to solve a problem instance, 

since the solution it finds may be either infeasible or suboptimal. However, the objective 

value obtained via Lagrangian relaxation is a valid lower bound on the original problem 

solution due to weak duality theory (Fisher, 1981). Thus, the Lagrange Variable problem 

can be an incremental step in a larger algorithm to find an optimal solution. We develop 

other techniques later in the chapter to obtain convergence on a final optimal feasible 

solution to the original problem instance. We formulate both the primal and dual versions 

of the AD CSP Lagrange Variable problem. A dual exists for the inner minimization of 

the path choice variables (Y) because of the Lagrangian relaxation. 
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In our formulation of the AD CSP problem Lagrange variable problem, we 

include dual variables on the constraints; these are the dual variables for any version of 

the Lagrangian relaxation with a fixed defense (W) and fixed attack (X), since the 

resulting problem is simply a shortest path linear program. These variables facilitate the 

formulation of a dual-ILP version of the AD CSP Lagrange variable primal problem. 

AD CSP Lagrange Variable Primal Problem: 

Additional Decision Variables: 

    Lagrange multiplier variable for violating the time budget 

i    Dual variable associated with network node i. 

ijd    Dual variable associated with network arc (i, j) with defense d. 

 

Formulation: 
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We reformulate the inner AD model in (4.5a) with Lagrangian relaxation of the 

time constraint to the objective function. The noticeable change in (4.5a) is that the 

Lagrange multiplier (μ) is now a decision variable instead of a data parameter. Equation 

(4.5b) are the usual balance of flow constraints, and we introduce the dual variable (-π) to 

account for the activity at each node in the network. We introduce dual variables with a 

negative value to keep with the dual variable convention used in other chapters. Equation 
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(4.5c) introduces the dual variable (-α) to account for activity on each arc of the network. 

Equation (4.5d) is the unchanged restriction on the number of attacks. Equation (4.5e) 

allows path variables (Y) to be continuous because of the special network structure of the 

problem created by relaxing the time constraint to the objective function. Equation (4.5g) 

restricts the Lagrangian multiplier decision variable to positive values. 

Since the inner minimization of AD CSP Lagrange Variable primal problem 

involves a continuous variable (Y), we are able to solve it in at least two different ways. 

We can solve AD CSP Lagrange variable problem with Benders (1962) decomposition. 

A more attractive option would be to take the dual of the inner minimization problem and 

reduce the CSP AD Lagrange Variable problem from bi-level maxi-min optimization to a 

single level maximization problem. The advantage of taking the dual of the inner 

minimization is that the single-level maximization problem frequently can be solved 

more quickly than using Benders (1962) decomposition. This is the case for almost every 

instance of our problem that we discuss. 

AD CSP Lagrange Variable Dual ILP Problem Formulation: 
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 unrestricted                                                           ,i i N    (4.5k) 

0,s    (4.5l) 

0                                                                  ( , ) , ,ijd i j A d D      (4.5m) 

 0,1                                                                ( , ) ,ijX i j A    (4.5n) 

0.    (4.5o) 
 

Expression (4.5h) is the single level maximization of the dual integer linear 

program (ILP). The first summation in (4.5h) has only one nonzero term (πt). Equation 

(4.5i) is the dual equation for each arc in the network. Equation (4.5j) is unchanged from 
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the primal problem. Equation (4.5k) and (4.5l) define the restrictions on the node dual 

variables, and anchors the start node to a value of zero. Equation (4.5m) ensures the arc 

variables are non-negative. Equations (4.5n-o) are unchanged from the primal problem.  

The AD CSP Lagrange variable dual ILP problem is a mixed integer program that 

can be solved in one invocation of optimization software. The useful result of the AD 

CSP Lagrange variable dual ILP is the values of the attack variables (X) and the objective 

function value. The optimal values of the dual node and arc variables (π and α) are not of 

particular concern. However, there is no guarantee that the dual variables will be 

associated with a feasible path that satisfies the side constraint time budget. The Lagrange 

variable relaxation allows the time budget to be violated, which would permit solutions 

that are infeasible for the original problem instance. 

We use the dual-ILP formulation for the remainder of the chapter because it 

avoids the confusion resulting from presenting a nested decomposition algorithm. In 

practice, we observe the dual-ILP is faster than decomposition of the AD CSP Lagrange 

variable primal problem on our test network problem instances. However, if Benders 

(1962) decomposition would be significantly faster than solving the dual-ILP for other 

problem instances, then it could be easily incorporated into our algorithm without a 

change to the theoretical results. 

2. Path Enumeration Closes Lagrangian Relaxation Optimality Gap 

When we choose to perform iteration to find the best value for the Lagrange 

multiplier (μ) in the relaxed operator model, we must address the issue of convergence. 

Lagrangian relaxation is not guaranteed to converge on an optimal solution. For example, 

Lagrangian relaxation of the CSP for the six node test network does not converge on an 

optimal solution when the time budget is 14 units as discussed in Ahuja et al. (1993, pp. 

608–614). We require a method to obtain the optimal constrained shortest path when the 

Lagrangian relaxation bounds cannot agree. We employ a recursive path enumeration 

algorithm to close the gap between the Lagrangian upper and lower bounds, as described 

in Carlyle et al. (2008). We enumerate all of the time budget feasible paths that exist with 

costs between the Lagrangian upper and lower bounds with a recursive depth first search 



 158

network algorithm. Carlyle et al. (2008) show how this technique can be applied to 

medium and large size networks. The depth first search path enumeration algorithm we 

implement is adapted from Python Software Foundation (2003). Pseudo-code for the path 

enumeration algorithm is in the Appendix. 

3. Multi-cut Inputs to AD Inner Master Problem 

Each iteration of inner decomposition of the AD CSP problem involves finding 

the single best feasible path for a fixed defense plan in the inner sub problem. That path is 

attacked in the inner decomposition AD master problem. Inner decomposition could be 

done more quickly if multiple feasible short paths were fed to the master problem instead 

of just one path at a time. When the Lagrangian relaxation of the inner AD sub problem is 

iterated and the Lagrangian bounds do not match, there is an opportunity to find multiple 

feasible paths to close the Lagrangian optimality gap. The previous section described 

how path enumeration is used to close the gap between the Lagrangian upper and lower 

bounds of the relaxation of the AD sub problem by finding the shortest feasible path that 

exists between the Lagrangian upper and lower bounds. But, path enumeration also 

generates all of the feasible paths that have a cost between the Lagrangian upper and 

lower bounds of the relaxed AD inner sub problem. Instead of only utilizing the shortest 

cost path in between the Lagrangian upper and lower bounds found in the inner sub 

problem, we can utilize any subset of the feasible paths generated by the path 

enumeration algorithm in an attempt to reduce the number of iterations in the inner AD 

sub problem. Each feasible path generated through the path enumeration algorithm 

becomes an input cut to the inner decomposition AD master problem. Our use of more 

than one path per iteration as input cuts to the AD master problem are called multi-cuts. 

In order to implement multi-cuts into the path enumeration algorithm, we only 

need to make one change in the final step of the path enumeration algorithm: 

Return all time budget feasible paths with their associated costs.  

This change means the CSP with Lagrangian relaxation inner AD master problem 

receives many feasible paths as inputs during an iteration. All feasible paths can now be 

given as input cuts to the AD master problem. 
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However, the use of multi-cuts does have a shortcoming. In large networks, it 

may be possible that an enormous number of feasible paths exist with costs that are 

between the Lagrangian upper and lower bounds. If the upper and lower bound gap is 

significantly large, an enormous amount of paths could become input cuts. We do not 

recommend the use of all multi-cuts on large networks since the constraint set could 

become prohibitively large. Instead, an analyst could limit the size of the constraint set by 

selecting only small number of multi-cuts to pass to the master problem. 

Another criticism of the use of multi-cuts as inputs to the inner AD master 

problem is that using all feasible paths at once could generate some superfluous cuts in 

the AD master problem that do not influence the choice of the optimal attack solution. A 

rebuttal to this criticism is that it is also possible that some relevant cuts that would have 

been found in later iterations of inner decomposition may be discovered in earlier inner 

iterations because of the path enumeration routine. Therefore, we believe the benefit of 

finding relevant cuts earlier than normal through path enumeration outweighs the 

possibility of including some useless path cuts in the inner AD master problem. 

Consider the six node test network. In this example, we assume zero defense 

budget, so no arcs are defended. We assume an attack budget of one unit, so only one arc 

may be attacked. We assume a time budget of 14 units. Next, we perform decomposition 

to obtain the best attack and the resulting shortest cost path subject to the time budget. 

Lagrangian relaxation with path enumeration on the six node test network will 

take three iterations to find the worst-case attack and shortest path cost. The details of 

each iteration of Lagrangian relaxation with path enumeration are shown in Table 30. 

Figure 48 shows the final results of each iteration implemented on the test network. In 

Figure 48, each iteration is shown, starting in the top left. The final attack is shown with a 

red “X” and the shortest path chosen is a blue line for each iteration. The lower bound is 

obtained by the cost of the path with the initial attack, and the upper bound is obtained by 

the cost of the path with the final attack. 



 160

Table 30.   Lagrangian Relaxation and Path Enumeration on Test Network 

Iteration 
Initial 
Attack 

Shortest Path 
Final 

Attack 
AD Upper 

Bound 
AD Lower 

Bound 
1 None (1,3), (3,2), (2,4), (4,6) (1,3) 38 13 
2 (1,3) (1,2), (2,4), (4,5), (5,6) (2,4) 38 14 
3 (2,4) (1,3), (3,2), (2,5), (5,6) (2,4) 15 15 

 

 
First Iteration    Second Iteration 

 
Third Iteration 

Figure 48.  Lagrangian Relaxation and Path Enumeration on Test Network 

Next, we examine the effect of introducing multi-cuts on the six node test 

network. The details of each iteration of Lagrangian relaxation with multi-cut path 

enumeration are shown in Table 31. Figure 49 shows the final results of each iteration 

implemented on the test network. In Figure 49, the first and second iterations are shown 
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from left to right. In the first iteration, the three feasible paths obtained from enumeration 

are shown with a solid blue line, a short dashed purple line, and a longer dashed orange 

line. The final attack based on all multi-cuts is shown with a red “X.” The second 

iteration only has one feasible path remaining. 

Table 31.   Multi-cut Algorithm Improvement on Six Node Test Network 

Iteration 
Initial 
Attack 

Feasible Paths 
Final 

Attack 
AD Upper 

Bound 
AD Lower 

Bound 

1 None 
(1,3), (3,2), (2,4), (4,6) 
(1,2), (2,4), (4,5), (5,6) 
(1,3), (3,2), (2,5), (5,6) 

(2,4) 15 13 

2 (2,4) (1,3), (3,2), (2,5), (5,6) (2,4) 15 15 
 

 
(a) First Iteration    (b) Second Iteration 

Figure 49.  Multi-cut Algorithm Improvement on Six Node Test Network 

The beneficial result of the inclusion of multi-cuts on the example problem 

instance is the number of iterations required to find the solution to the inner AD 

decomposition is reduced. The first iteration is able to enumerate three feasible paths 

before an attack is determined by the master problem. The worst-case attack can only 

affect two of the three feasible paths. When comparing the first iteration of the multi-cuts 

improvement with the three iterations of inner decomposition without the multi-cuts 

improvement, it can be seen that all feasible paths are obtained in one step with multi-

cuts, and in this case, no superfluous paths were created. The multi-cuts improvement 
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eliminated the need to perform Lagrangian relaxation three times in order to obtain the 

three relevant paths for the AD master problem. There is only one feasible path found by 

enumeration in the second iteration because the other feasible paths from the first 

iteration are excluded. The penalty (q) imposed by the initial attack raises the cost of arc 

(2, 4) by an additional 25 units. The penalized cost of the arc results in paths that are 

more expensive than the upper bound. 

E. RELAXATION IN INNER AND OUTER DECOMPOSITION 

The Lagrange variable dual ILP problem of (4.5h-o) can be implemented into the 

AD inner decomposition in two different ways. The most powerful application of the 

Lagrange variable dual ILP problem is to completely replace AD inner decomposition 

with the Lagrange variable dual problem. Notice that both the Lagrange variable dual ILP 

problem and regular AD inner decomposition produce an attack (X) to provide as input to 

the outer decomposition. Regular inner decomposition can produce an optimal attack, but 

the Lagrange variable problem usually can produce an attack that is fairly close to 

optimal. There is no guarantee of the quality of the attack found by the Lagrange Variable 

dual ILP problem. Since optimal attacks are not found, this application is a heuristic 

approach. But, as we will show, the savings in computation time of not performing inner 

decomposition are quite dramatic. 

A second application of the Lagrange variable dual ILP is as a warm start for the 

combination of the iterative Lagrangian relaxation operator model with path enumeration. 

In this second application, we use the fact that each round of inner decomposition begins 

with a starting point of no fixed attacks. Decomposition works by constructing attacks 

one at a time until the optimal attack is found. The Lagrange variable dual ILP problem 

can be used to find an initial attack that is usually fairly close to optimal. This initial 

attack from the Lagrange variable problem can then be used as a starting fixed attack (X) 

for Lagrangian relaxation of the operator model. The result is usually fewer inner 

decomposition iterations because the starting point attack is close to the optimal attack. 

The path enumeration algorithm terminates with the constrained shortest path. 

The associated cost of the constrained shortest path is used to update the inner 
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decomposition lower bound. The values of the shortest path variables (Y) are fixed and 

supplied as input to the AD master problem. 

The AD inner master problem used in conjunction with the operator model 

Lagrangian relaxation is unchanged from (3g–k). Each iteration of the AD master 

problem represents an opportunity to update the inner decomposition upper bound. When 

the inner decomposition lower bound is updated, the attack associated with that iteration 

is saved as the best known attack. We refer to this set of best attack variable values as X 

star (X*). Also, the value of the Lagrange multiplier from the AD sub problem used in 

this iteration is saved as the best known Lagrange multiplier. We refer to this best known 

value of the Lagrange multiplier as mu star (μ*). Pseudo-code for the implementation of 

the Lagrangian relaxation and path enumeration as the AD inner decomposition is 

presented in the appendix. 

Either of the two approaches for inner decomposition can serve as a sub problem 

for the outer decomposition master problem. The outer decomposition master problem of 

DAD CSP with Lagrangian relaxation features the minimization of both binary defense 

variables (W) and path variables (Y). We use Lagrangian relaxation again on the outer 

decomposition master problem by moving the time budget constraint to the objective 

function. This transformation again restores the special network structure of the problem 

and allows us to treat the path variables (Y) as continuous variables. The Lagrange 

multiplier (μ) is necessary to regain the network structure of the outer master problem, 

and it can be different for each iteration of outer decomposition (k’). However, we do not 

treat the Lagrange multiplier (μ) as neither a decision variable nor an iterated value in the 

relaxed outer master problem. Instead, we choose to import the value of the Lagrange 

multiplier (μ) that was obtained from inner decomposition. We use the hat symbol (^) to 

denote the Lagrange multiplier is a fixed value in the relaxed DAD outer master problem. 

DAD CSP with Lagrangian Relaxation Outer Master Problem: 

Additional Parameter: 

'ˆk   Lagrange multiplier during iteration k’ of outer decomposition.  

(Note: Obtained from inner decomposition) 
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Formulation: 
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Expressions (4.5p) and (4.5q) work together to form the outer decomposition 

master problem to minimize the cost of shortest paths with fixed attacks by the choice of 

defense and path variables. Equation (4.5q) shows the Lagrangian relaxation of the time 

budget constraint is also present in the outer master formulation, which regains the 

network structure of the formulation. Equation (4.5r) is similar to (4.2b), except that 

iteration subscripts “k” have been added to the path variables for each outer 

decomposition. Equation (4.5s) restates (4.2f). Equation (4.5t) is similar to (4.2c), but the 

addition of subscript “k” allows for different path variables for each iteration of outer 

decomposition. Equation (4.5u) restates (4.2f). Equation (4.5v) allows path variables to 

have continuous values, since the Lagrangian relaxation regains the network structure. 

Equation (4.5w) is unchanged from (4.2j). 

The new feature in the outer decomposition master problem is the Lagrangian 

relaxation of the time budget constraint into the iteration dependent objective equations 

(4.5q). Once again, the purpose of the relaxation is to reduce the number of binary 

variables that must be considered in the outer master problem. However, the effect of the 
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reduction is much more dramatic in the outer master problem because the path choice 

variables (Y) can be different in each iteration (k’) of outer decomposition. Lagrangian 

relaxation has its greatest effect in the outer master problem because the number of path 

choice variables (Y) is dependent upon the number of iterations (k’). 

Determination of the values of the Lagrange multiplier (μk’) in the outer 

decomposition is not trivial. The outer decomposition features the defense binary 

decision variables (W) in the constraints alongside the Lagrange multiplier (μ). 

Furthermore, the Lagrange multiplier (μ) can have a different value for each iteration of 

outer decomposition, since the path choice variables (Y) can be different in each outer 

iteration (k’). The outer master formulation means that the value of the Lagrange 

multiplier (μk’) depends upon both the choice of defense variables (W) as well as relaxed 

path choice variables(Y), which also vary during each outer decomposition iteration (k’). 

We employ a novel feature to solve the issue of determining the Lagrange 

multiplier (μk’) for each iteration of outer decomposition. We desire to avoid performing 

another round of Lagrangian relaxation iterations (L) to find the best value of the 

Lagrange multiplier for each round of DAD outer iterations (K’). We use the best value 

of the Lagrange multiplier from the inner decomposition (μ*) as the only value of the 

Lagrange multiplier for the current iteration (k’) in the outer decomposition. The 

rationale behind this choice is that the Lagrange multiplier (μ) serves as the amount of 

penalty that the objective function must incur for failing to adhere to the time budget 

constraint. The inner decomposition relaxation determined the best value for this penalty 

(μ) when defense variables (W) were fixed and the attack variables (X) were optimized. 

The methodology for the updating of the outer decomposition upper and lower 

bounds is similar to the approach seen in Chapter I with the DAD minimum cost flow 

problem. Refer to Chapter I for the specifics of updating bounds. 

F. TWO HEURISTIC ALGORITHMS FOR DAD CSP  

In this section we utilize all of the mathematical models described in previous 

sections in order to create two related algorithms to quickly determine a reasonably good 

feasible defense (W), and establish a bound on the DAD CSP problem. The first 
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algorithm has the goal of obtaining valid upper and lower bounds on the DAD CSP 

problem instance and providing a good defense for the network that is not guaranteed to 

be optimal. We refer to the first algorithm as a bounding heuristic since its goal is to 

provide upper and lower bounds on a DAD CSP problem instance. The second algorithm 

has the goal of finding a valid lower bound and a good defense plan as fast as possible by 

ignoring the development of an upper bound. We refer to the second algorithm as a speed 

heuristic since its goal is to is to find a good defense plan and a lower bound as fast as 

possible. We use the term good defense plan because these heuristics have no guarantee 

of producing the optimal solution. We observe these heuristics could find the optimal 

solution for some instances, but they cannot guarantee optimality by themselves. 

Using these heuristic approaches as a stepping stone to obtain the optimal solution 

will be explored in the next section. We have also included a second part of a name to 

both of these algorithms as a nod to their eventual use with another technique in the next 

section. We call both of these heuristic approaches phase 1 algorithms because by 

themselves they do not guarantee the ability to converge on an optimal solution of 

defenses (W) for a network. Rather, the phase 1 algorithms provide a starting point to 

help find the optimal solution more quickly than the regular nested decomposition 

approach discussed previously. Phase 1 algorithms also provide a known defense that is 

associated with the DAD lower bound. Both phase 1 algorithms can be called a heuristic 

approach to the DAD CSP problem because there is no guarantee of optimality, nor is 

there any guarantee on the solution quality that is obtained. However, these phase 1 

algorithms both obtain at least one bound on a solution much faster than it would take to 

solve the DAD CSP problem via the regular nested decomposition approach. 

1. DAD CSP Phase 1 Bounding Heuristic Algorithm 

The phase 1 bounding heuristic algorithm incorporates all of the mathematical 

models shown in the previous sections. The Lagrange Variable dual ILP problem is used 

to produce an initial attack (X) that serves as a smart starting point for the inner 

decomposition AD sub problem. Multi-cuts are used from path enumeration to give 

multiple feasible attack cuts to the AD master problem. There are two nested loops in the 
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algorithm which represent the outer and inner decompositions of the DAD CSP problem 

instance. 

Since our heuristic algorithm uses Lagrangian relaxation, there is no guarantee of 

convergence on an optimal solution. We introduce a stopping criterion for our heuristic 

algorithm to terminate whenever it repeats a defense (W) that it had found in a previous 

iteration. In our tests, we limit the number of outer iterations of the phase 1 algorithm at 

199. We observe the algorithm always terminates because the defense plan is repeated 

twice before reaching 199 iterations. 

DAD CSP Phase 1 Bounding Heuristic Algorithm: 

Inputs: 
Network data with defense, attack, and time budgets 
Iteration limits for DAD (outer) and AD (inner) decomposition 
Optimality tolerances for all models (usually zero) 

Outputs: 
DAD Upper & Lower Bounds, best known defense (W*) and attack (X2*). 

Algorithm: 
While DAD Upper bound – DAD Lower Bound ≥ tolerance & DAD iteration ≤ limit: 

Solve AD CSP Lagrange Variable dual ILP 
Obtain initial attack (X) and Lagrange multiplier (μ)  
While AD Upper Bound – AD Lower Bound ≥ tolerance & AD iteration ≤ limit: 

Solve AD CSP with Lagrangian relaxation inner sub problem 
Obtain Lagrangian upper and lower bounds and best multiplier (μ) 
If Lagrangian relaxation bounds match: 

Obtain shortest path (Y) & associated cost 
Else: 

Perform Recursive Path Enumeration Algorithm 
Obtain all feasible paths (Y) & shortest path cost 

If shortest path cost > AD (inner) Lower bound: 
Update AD (inner) lower bound 
Save associated attack (X) as best known attack (X*) 
Save associated Lagrange multiplier (μ) as best multiplier (μ*) 

Solve CSP Inner Decomposition AD Master Problem 
Obtain attack plan (X) and associated cost 
Update AD (inner) upper bound if associated cost decreases  
Increment inner decomposition iteration counter 

Update DAD (outer) Upper Bound with AD (inner) Upper Bound, if it is smaller 
Solve DAD CSP Lagrangian Relaxation outer master 
If outer objective function value > DAD master lower bound: 

Update DAD master lower bound 
Record values of defense variables as best defense (W*). 
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Save attack associated with this defense as (X2*) 
Increment DAD iteration counter 
If current defense (W) matches a defense from a previous outer iteration: 

Exit outer while loop  
 

In our testing of the phase 1 bounding algorithm, we limit the maximum value of 

inner decomposition iterations to one. We observe that limiting the inner decomposition 

to one iteration step has a positive benefit at the expense of a small degradation in 

precision. We can simplify the phase 1 bounding algorithm to obtain upper and lower 

bounds more quickly by limiting the AD inner decomposition to just one iteration. But, 

the bounds obtained from just one inner decomposition iteration may be less precise than 

if more iterations were performed. The one round of AD inner decomposition allows for 

all of the steps of the algorithm to be completed. The shortcoming of using only one 

iteration of inner decomposition is that the optimal attack (X) may not be found. 

However, we believe that the tradeoff of weaker bounds in this algorithm is justified by 

the increase in solution speed, since only one iteration of inner decomposition is 

performed for each iteration of outer decomposition. The phase 1 bound algorithm is a 

heuristic, so performing more than one iteration of inner decomposition may not have 

much benefit for the extra effort required in additional inner decomposition iterations. A 

secondary benefit of only having one iteration of inner decomposition is that we do not 

need to further complicate our algorithm by checking for repeated paths. 

Proposition 4–2. The phase 1 bounding heuristic algorithm produces valid upper and 

lower bounds for a DAD CSP problem instance. 

Proof of Proposition 4–2. The heuristic approach contains all of the constraint 

equations that appear in the original DAD CSP problem, except for the time constraint, 

which has been relaxed to the objective function. The time constraint only effects the 

choice of path variables (Y), as seen in Equation (4.1g). Each set of attack variable values 

(X) obtained in the heuristic are feasible attacks because they must obey the attack 

constraints of the original DAD CSP problem. Each set of defense variable values (W) 

obtained in the heuristic are feasible defenses because they must obey the defense 

constraints of the original DAD problem. Our heuristic approach is not concerned with 
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the values of the path variables (Y), so we need not worry if the values obtained for them 

via relaxation are feasible. Ahuja et al. prove via weak duality that for any value of the 

Lagrange multiplier (μ), the value of the Lagrangian function “is a lower bound on the 

optimal objective function value of the original optimization problem” (1993, p. 605). 

Our use of the same Lagrange multiplier value from the inner decomposition to the outer 

master problem produces the same effect of creating a valid lower bound on the overall 

DAD CSP problem. The phase 1 boundary algorithm also produces a valid upper bound. 

Since the phase 1 bound algorithm always includes at least one iteration of Lagrangian 

relaxation and path enumeration of the inner sub problem, we are guaranteed that the 

output of the inner sub problem is a feasible path (Y) for the original problem instance. 

The inner upper bound is computed by taking the best feasible path (Y) and the optimized 

attack (X) for a fixed defense (W). The inner upper bound is simply transferred to the 

outer decomposition as its upper bound if it is an improvement. Thus, the upper bound 

calculation is feasible solution to the original problem instance and therefore it is valid. 

Therefore, our use of Lagrangian relaxation in the phase 1 bound algorithm is guaranteed 

to produce valid upper and lower bounds on the original DAD CSP problem instance. 

2. DAD CSP Phase 1 Speed Heuristic Algorithm 

The phase 1 speed heuristic algorithm is a simplification of the phase 1 bounding 

heuristic algorithm. The speed improvement is centered on the question of the usefulness 

of the DAD CSP upper bound. Certainly, situations exist where feasible upper bounds are 

informative. But, when considering that the heuristic algorithm can be an incremental 

step toward obtaining the optimal solution within a larger algorithm, the importance of a 

valid upper bound is diminished. Since the optimal solution may be obtained after this 

incremental step, the importance of having a valid upper bound is diminished. A second, 

but less powerful concept against the importance of an upper bound is to consider the 

idea of a heuristic. The purpose of the heuristic is to obtain a good feasible solution to the 

original problem. The heuristic solution does not need to be optimal, but other qualities 

make a potentially suboptimal heuristic solution attractive. In this case, obtaining a 

feasible good suboptimal solution quickly to a DAD CSP problem is quite attractive. 
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We can modify the phase 1 bounding heuristic algorithm to be faster if we 

examine the inner decomposition to eliminate some of the calculations. The purpose of 

the inner decomposition is to determine a worst-case attack (X) as an input to the outer 

master problem. Consider that the phase 1 bounding heuristic algorithm obtains the 

worst-case attack (X) in general terms by performing three tasks. First, the phase 1 

bounding algorithm uses the Lagrange variable problem to create a good guess initial 

attack to start the decomposition. The second task performs Lagrangian relaxation and 

path enumeration to find the shortest feasible path and an inner upper bound. The third 

task finds the worst-case attack and updates the inner lower bound. If we eliminate the 

second and third tasks from the inner decomposition, we can simplify the inner 

decomposition to just one task. Eliminating these two tasks is possible because the first 

task provides a reasonably good feasible attack (X) as inputs to the DAD outer master. 

The second and third tasks serve to ensure feasibility of a path based on that attack and 

calculate valid bounds. The third task may also find a better attack than the attack 

obtained by the Lagrange variable dual ILP, but it is not guaranteed. Elimination of the 

second and third tasks reduces the number of required calculations, which improves 

solution speed. 

Elimination of the second and third major tasks from inner decomposition does 

have negative aspects. The only task remaining in inner decomposition is the Lagrange 

variable dual ILP problem, which can create an attack that is based on dual variables 

associated with an infeasible path. The eliminated task of Lagrangian relaxation with path 

enumeration ensures that a feasible path is found for the attack. Without a feasible path 

that is obtained with path enumeration, a feasible inner upper bound cannot be computed. 

The importance of the inner upper bound is that it is feasible solution to the original 

problem for a fixed defense (W). Therefore, the inner upper bound can be carried over as 

an upper bound on the overall DAD CSP problem instance. 

DAD CSP Phase 1 Speed Heuristic Algorithm: 

Inputs: 
CSP Network; defense, attack, and time budgets 
Iteration limits for DAD (outer) and AD (inner) decomposition 
Optimality tolerances for all models 
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Outputs: 
DAD Lower Bound, best known defense (W*), associated attack (X2*). 

Algorithm: 
While DAD Upper bound – DAD Lower Bound ≥ tolerance & iteration < max value: 

Solve AD CSP Lagrange Variable dual ILP 
Obtain attack (X) and Lagrange multiplier (μ) 

Solve DAD CSP with Lagrangian relaxation outer master 
Obtain and record values of defense variables (W) 
Obtain outer objective function value 
If outer objective function value > DAD master lower bound: 

Update DAD master lower bound 
Record values of defense variables as best defense (W*) 
Save attack associated with this defense as (X2*) 

If current defense (W) matches a defense from a previous outer iteration: 
Exit while loop 
 

G. EXTENDING THE HEURISTIC TO OBTAIN PROVABLY OPTIMAL 
SOLUTIONS  

The phase 1 bounding heuristic algorithm in the previous section allows us to 

quickly obtain valid upper and lower bounds on the DAD CSP problem instance. The 

phase 1 speed heuristic quickly finds a lower bound, but no upper bound is provided. The 

shortcoming of both of these approaches is that phase 1 algorithms do not normally find 

the optimal solution to the DAD CSP problem. In this section, we use the results of the 

phase 1 heuristic as input to another algorithm to obtain the proven optimal solution to 

the DAD CSP problem. We call this algorithm the phase 2 optimality algorithm because 

it couples with one of the phase 1 algorithms from the previous section to produce an 

optimal solution to a DAD CSP problem instance. As the names imply, the combination 

of the phase 1 speed algorithm with the phase 2 optimality algorithm can find the optimal 

solution to a DAD CSP problem instance the quickest. 

Simply stated, the phase 2 optimality algorithm is the regular nested 

decomposition discussed earlier in the chapter with two types of intelligent starting inputs 

which save time and iterations. First, regular nested decomposition begins the inner AD 

subproblem with no defense chosen as the initial fixed defense. We choose a smarter 

starting point that uses the best known defense (W*) from the phase 1 defense as a 

starting point. We also include the attack associated with that best known defense as a 
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starting point for the inner AD subproblem. These smart inputs allow the first iteration of 

inner decomposition to benefit from the information that was learned by either phase 1 

algorithm. Second, we observe regular nested decomposition starts with no information 

to build the outer master decomposition constraints. The phase 1 attack inputs to the 

phase 2 algorithm are called cuts because they act as constraints that trim portions of the 

outer master problem feasible region. Regular nested decomposition is completely 

dependent upon the results of inner decomposition to find a best attack to serve as a 

constraint for the outer master problem. The intelligent improvement is to use some or all 

of the best attacks found in each outer iteration of the phase 1 algorithms as input cuts to 

the phase 2 regular outer decomposition master problem.  

The amount of phase 1 attack cuts supplied to the phase 2 algorithm is a choice 

for an analyst to make that is based on the characteristics of the network. Selecting all 

phase 1 attack cuts as inputs to the phase 2 outer master problem makes intuitive sense. 

All of the phase 1 attack cuts would create the most number of constraints that could trim 

the feasible region of the outer master problem. But, using all attack cuts as constraints 

for the outer master problem also has a significant drawback. The outer master problem is 

essentially a large binary linear program since both the defense variables (W) and path 

choice variables (Y) are binary. Each additional attack that is added as a constraint to the 

outer master problem will require another set of binary path variables (Y), because these 

variables have the outer iteration (K’) as a subscript. A larger amount of binary variables 

can make the outer master problem more difficult to solve. Refer to (4.3m) and (4.3n) in 

the beginning of the chapter to see the iteration subscript on the path variables (Y) in the 

outer master problem. On the other hand, the analyst can choose to only pass a small 

number of phase 1 attack cuts to the phase 2 outer master problem. For example, the 

analyst could send only the two most recent cuts from the phase 1 problem. Sending a 

small number of attacks avoids the problem of a large binary linear program, but fewer 

input cuts results in less opportunity to trim portions of the outer master feasible region. 

Through trial and error, we have two recommendations for the number of attack 

cuts to send from the phase 1 algorithm to the phase 2 outer master problem. When the 

network size is small or medium size, we include all of the phase 1 attacks as input cuts 
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to the phase 2 outer master problem. Our small and medium size test networks do not 

suffer tremendously from the problem of creating a very large amount of binary variables 

in the outer master problem when all of the phase 1 attacks are supplied as input cuts to 

phase 2. However, we recommend the opposite for very large networks. We find that the 

usage of the final two best attacks from the phase 1 algorithm are a good choice for input 

cuts to the phase 2 outer master problem for very large networks. This improvement 

gives the outer master some initial cuts to the feasible region of possible defense and path 

choices, while not creating too many binary variables overall. If all attack cuts are sent as 

inputs to the phase 2 outer master problem for very large networks, we observe that the 

speed of convergence is slowed down as the solver attempts branch and bound for a very 

large amount of binary variables. The real-world network example shows how the use of 

only two cuts from the phase 1 algorithm can be advantageous to the phase 2 algorithm. 

DAD CSP Phase 2 OPTIMALITY Algorithm: 

Inputs: 
Complete DAD CSP Phase 1 algorithm (either speed or bounding). 
Best defense (W*) and associated attack (X2*), number of iterations performed 
Choose a number of Phase 1 attack (X*) to utilize as cuts 
Optimality tolerances for regular nested decomposition of DAD CSP 

Outputs: 
Best defense plan (W*), attack plan (X*), and shortest path (Y) 
DAD outer upper & lower bounds 

Algorithm: 
Use Phase 1 information to begin regular nested decomposition of DAD CSP: 

Best defense (W*) and associated attack (X2*) is start point for first inner 
iteration AD inner decomposition sub problem 
For each best attack (X*) do: 

Create outer decomposition cut for the DAD outer master problem 
Set DAD outer decomposition counter to Phase 1 iteration number 

 

Proposition 4–3. Outer decomposition cuts from a Phase 1 heuristic are valid, feasible 

inputs to the regular nested decomposition of the Phase 2 optimality algorithm. 

Proof of Proposition 4–3. Both Phase 1 heuristics create attacks (X), and a best 

known defense (W*) that may be suboptimal. It is possible that a path (Y) obtained from 

the Lagrange variable problem may be infeasible, but the infeasibility is only limited to 

the path (Y) variables. The selection of attack variables (X) must obey the attack budget 
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constraint (4.2d), which is not relaxed. Therefore, the attack (X) from either Phase 1 

heuristic algorithm is feasible in terms of the original problem instance. The best known 

defense (W*) is always a feasible defense, even though it is obtained through a 

Lagrangian relaxation of the outer master in both Phase 1 algorithms. The best defense 

(W*) is always feasible because it must obey the defense budget constraint of (4.2e), 

which is not relaxed. Therefore, both the attacks (X) and best defense (W*) are feasible 

inputs to the regular nested decomposition of the phase 2 optimality algorithm. 

Proposition 4–4. DAD CSP Phase 2 algorithm obtains the optimal solution to the DAD 

CSP problem. 

Proof of Proposition 4–4. The Phase 2 optimality algorithm is nothing more than 

regular nested decomposition with the introduction of different starting points. Since 

regular nested decomposition does find optimal solutions, starting the algorithm from any 

other point in the feasible region will also lead to the optimal solution. Corner points of 

the feasible region are created as the cuts to the inner and outer master problems are 

added. The use of the phase 1 problem to start the phase 2 outer decomposition problem 

with more than zero feasible cuts to the feasible region does not affect the ability to reach 

the optimal corner point. Since each cut obtained in either phase 1 or phase 2 algorithms 

are feasible cuts, the optimal solution is never excluded from the feasible region. When 

the outer upper and lower bounds match, the optimal solution has been found. 

H. RESULTS ON ARTIFICIAL TEST NETWORK 

In this section we show the results on the 50 node grid network. We show the 

results of the phase 1 bounding algorithm to see how close its bounds can come to the 

optimal solution found in phase 2 optimality algorithm. We also show the results of the 

phase 1 speed algorithm combined with the phase 2 optimality algorithm in comparison 

to regular nested decomposition by itself in order to judge if our new algorithms improve 

the ability to obtain the optimal solution to a DAD problem instance more quickly. For 

the 50 node grid test network, we require all of our algorithms to converge on the optimal 

solution. We set all optimality tolerances for the 50 node grid test network to zero. 
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In order to understand how to interpret the result of a DAD CSP instance on the 

50 node test network, we discuss the results for one budget scenario and the solution 

performance. Consider a DAD CSP problem instance on the 50 node grid network with 

defense and attack budgets of 5 units and a time budget of 40 units. The optimal defense, 

worst-case attack, and resulting shortest cost path as calculated by the regular nested 

decomposition approach are shown graphically in Figure 50 and summarized in Table 32. 

In Figure 50, the defended arcs are shown in blue dashed lines, the attacked arcs are 

shown with a red “X,” and the shortest path is shown as solid green lines. The shortest 

path cost is 27 units. The optimal solution is obtained via regular nested decomposition in 

437.7 seconds. It is also possible that the optimal cost of 27 units could also be found 

through an equivalent optimal solution with different defenses, attacks, and shortest path. 

Table 32.   Optimal Defense, Attack and Shortest Path for DAD CSP Example 

Defense Budget = 5 
Attack Budget = 5 
Time Budget = 40 

50 Node Grid Test Network -- Arcs Selected 
Regular Nested Decomposition Method 

Optimal Defenses (1, 26) (26, 35) (28, 21) (33, 50) (35,28)  
Worst-case Attacks (15, 8) (23, 24) (26, 27) (32, 33) (40, 33)  

Shortest Path (1, 26) (15, 24) (22, 15) (24, 33) (26, 35) (28, 
29) (29, 22) (33, 50) (35, 28) 

Shortest Path Cost 27 units 
Time to Solve 437.7 seconds 
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Figure 50.  Optimal Defense, Attack and Shortest Path for DAD CSP Example 

We observe the optimal defense protects the first few segments of the shortest 

path, along with the final segment. The worst-case attack appears to favor attacking many 

of the approaches to the final segment of the path. The worst-case attack also cuts off a 

low-cost arc at the beginning of the network, since arc (26, 27) has a cost of two units.  

The results shown in Figure 50 can also be interpreted through the lens of game 

theory as the outcome of a sequential game. In this view, the defender acts first, the 

attacker acts second, and the defender acts third. First, the defender chooses to defend as 

much of the low cost path as possible, choosing the first four segments from the start 

node and the last segment connected to the terminal node. Second, the attacker uses most 

of his attacks to interdict many of the undefended approaches toward the last defended 

arc. The attacker chooses to penalize four of the paths to the terminal node, but he cannot 

attack them all. Since all of the paths cannot be attacked, he uses his last attack to cut off 

another low cost path near the beginning of the network by attacking arc (26, 27). Lastly, 

the defender (or operator) of the network must choose the shortest cost path that is 

available after the defenses and attacks have occurred. The defender (or operator) 

chooses the first three defended arcs as part of the shortest path, but the downstream 
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attacks in the network force him or her to abandon the fourth defended arc (28, 21). The 

downstream attacks make utilizing this defended arc no longer attractive in terms of cost. 

The defender then chooses undefended and unattacked arcs that provide the shortest path 

to get him or her to the final defended arc and the terminal node of the network. 

We do not report results whenever the defense budget or attack budget is zero 

units. We observe that the phase 1 speed and phase 2 optimality algorithms work more 

slowly than regular nested decomposition whenever a defense or attack budget is zero 

units. Simplifying the problem to zero units in either the defense or attack budget changes 

the nature of the problem to something other than a DAD problem. An attack budget of 

zero units reduces the problem to a defender–defender (DD) problem, which is also 

known as the network design problem. Network design problems use other solution 

techniques that are well studied in the literature (Magnanti & Wong, 1984). A defense 

budget of zero units reduces the problem to an attacker – defender (AD) problem, which 

is the well-studied network interdiction problem, as previously discussed in the 

introduction. The network interdiction problem only requires one layer of decomposition 

to obtain a solution. Both of these zero budget cases are not our concern, since other 

existing procedures in the literature are tailored for these scenarios. 

The next two subsections display the results obtained from both the phase 1 

bounding algorithm and the phase 1 speed algorithm coupled with the phase 2 optimality 

algorithm for the 50 node grid network. The first subsection shows how quickly the phase 

1 bounding algorithm can find usable bounds and defenses that are reasonably close to 

optimal. We also report when the phase 1 defense is also the optimal solution. The 

second subsection compares how quickly the optimal solution can be found for regular 

nested decomposition vs. the combination of the phase 1 speed and phase 2 optimality 

algorithms. We use two different methods to measure the effort it takes to obtain the 

optimal solution. Our results demonstrate that the combination of the phase 1 speed and 

phase 2 optimality algorithms obtain the same value for the optimal solution much faster 

than the regular nested decomposition approach.  
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1. Results for Combination of the Bounding and Optimality Algorithms  

Table 33 compiles the results of the phase 1 bounding algorithm combined with 

the phase 2 optimality algorithm for defense and attack budget scenarios varying between 

one and seven units on the 50 node test network. We present the upper and lower bounds 

found with the Phase 1 bounding algorithm. We show the Phase 2 optimal solution value 

to verify that the optimal solution was found. We show the time it took the phase 2 

optimality algorithm to obtain the solution based on the input it received from the Phase 1 

bounding algorithm. We show the gap between the phase 1 lower bound and the optimal 

solution that was obtained in phase 2 to give an idea about the solution performance of 

the phase 1 bounding algorithm. We have shaded entries in this column green that have a 

gap within 10% of the optimal solution, yellow for gaps between 10%—25% and red for 

optimality gaps greater than 25%. The calculation of the optimality gap between the 

phase 1 lower bound and the optimal solution given in Equation (4.6a). Lastly, we have a 

column to indicate if the phase 1 bounding algorithm was able to find the optimal 

defense. We color code yes and no answers in the last column. 

Optimal Solution - Phase 1 Lower Bound
Solution gap (%) = 100%

Phase 1 Lower Bound


 (4.6a) 
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Table 33.   Upper and Lower Bounds from Phase 1 Bounding Heuristic 

Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 
(seconds)

Phase 2 
Solution 
(seconds)

Phase 1 
Upper 
Bound 

Phase 1 
Lower 
Bound 

Phase 2 
Optimal 
Solution 

Phase 1 Bound 
vs. optimal gap

Phase 1 defense 
optimal? 

1 1 9.3 5.7 47 19.49 22 12.9% NO 
1 2 10.8 10.5 76 21 25 19.0% NO 
1 3 12.4 14.7 60 24.93 30 20.3% YES 
1 4 23.7 37.7 60 21.4 34 58.9% NO 
1 5 32 20.3 60 32.92 35 6.3% YES 
1 6 18.1 24.7 97 42.16 43 2.0% YES 
1 7 9 37.7 195 45 45 0.0% YES 
2 1 17 5.3 45 19.49 20 2.6% NO 
2 2 11.9 13.4 72 21 23 9.5% NO 
2 3 13.5 19.2 60 24.93 27 8.3% NO 
2 4 29.4 87.2 41 21.4 32 49.5% NO 
2 5 41.3 81.3 40 30.4 33 8.6% NO 
2 6 21.4 51.9 86 31.94 36 12.7% YES 
2 7 19.1 100.5 54 29.05 39 34.3% YES 
3 1 19.1 5.4 45 19.49 20 2.6% NO 
3 2 25 23.8 72 21 23 9.5% NO 
3 3 32.4 12.2 53 24.21 26 7.4% NO 
3 4 61.9 50 35 26.32 29 10.2% NO 
3 5 55.7 102.5 35 28.16 32 13.6% NO 
3 6 35.1 52.4 85 31.1 34 9.3% YES 
3 7 89.4 231.1 54 33.01 37 12.1% NO 
4 1 16.4 3.6 45 19.16 20 4.4% YES 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 
(seconds)

Phase 2 
Solution 
(seconds)

Phase 1 
Upper 
Bound 

Phase 1 
Lower 
Bound 

Phase 2 
Optimal 
Solution 

Phase 1 Bound 
vs. optimal gap

Phase 1 defense 
optimal? 

4 2 22.3 25.8 72 21 22 4.8% NO 
4 3 22.5 31 53 17 23 35.3% NO 
4 4 40.8 18 56 19.28 26 34.9% YES 
4 5 74.7 358.9 40 25.6 31 21.1% YES 
4 6 70.5 108.5 61 28.16 33 17.2% YES 
4 7 145.1 1451.7 51 33 34 3.0% YES 
5 1 21.4 4.1 45 19.16 20 4.4% YES 
5 2 27.7 18 72 20 22 10.0% NO 
5 3 40.5 16.7 53 21.29 22 3.3% NO 
5 4 100.2 61.4 41 23.67 25 5.6% NO 
5 5 138.4 271.9 45 25.6 27 5.5% NO 
5 6 141.7 354.7 60 28 29 3.6% NO 
5 7 197.7 1958.7 54 30.4 33 8.6% NO 
6 1 31.5 4.5 45 19.16 20 4.4% YES 
6 2 29.6 12.9 72 20 22 10.0% NO 
6 3 74.6 20 53 21.29 22 3.3% NO 
6 4 47.8 145 56 17.28 23 33.1% NO 
6 5 65.1 299.7 56 23.67 26 9.8% YES 
6 6 88.5 465.3 60 21.07 27 28.1% NO 
6 7 195.1 34283 54 27.5 31 12.7% NO 
7 1 33.2 4.5 45 17.87 20 11.9% YES 
7 2 21.5 15.7 47 20 21 5.0% YES 
7 3 43.7 10.7 53 20 22 10.0% NO 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 
(seconds)

Phase 2 
Solution 
(seconds)

Phase 1 
Upper 
Bound 

Phase 1 
Lower 
Bound 

Phase 2 
Optimal 
Solution 

Phase 1 Bound 
vs. optimal gap

Phase 1 defense 
optimal? 

7 4 121 64.9 33 21.24 23 8.3% NO 
7 5 122.9 91.3 49 23 24 4.3% NO 
7 6 445.6 2360.6 45 25.12 26 3.5% NO 
7 7 354.3 11184 54 25.6 28 9.4% NO 
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Table 33 shows that the phase 1 bounding algorithm is able to obtain valid upper 

and lower bounds on the DAD CSP problem instance quickly. It only takes the algorithm 

a few minutes to obtain bounds that are almost always within 25% of the optimal 

solution, and more often than not within 10% of the optimal solution. We observe that it 

can take considerably more time for phase 2 to prove the optimality of the solution to the 

original problem instance. The final column of the table shows that about half of the time, 

our phase 1 bounding algorithm finds the optimal defense. Recall that the phase 1 

bounding algorithm is not guaranteed to find the optimal defense for a DAD CSP 

problem instance because it is a heuristic without a performance guarantee. The final 

column shows that it is possible that the optimal solution might be found by the phase 1 

bounding algorithm. While optimal solution speed is not the goal of the phase 1 bounding 

and phase 2 optimal solution algorithm, this approach does have a solution speed that is 

comparable with regular nested decomposition. 

2. Speed and Optimality Algorithms vs. Regular Decomposition 

Table 34 provides the details of the speed comparison of the phase 1 speed 

algorithm coupled with the phase 2 optimality algorithm vs. the regular nested 

decomposition algorithm in system of Equations (4.3). The final column of Table 34 

gives the relative performance percentage change between the phase 1 and 2 algorithms 

and regular nested decomposition. The final column entries are shaded green whenever 

the relative performance percentage is positive and shaded red when the relative 

performance percentage is negative. The calculation of the relative performance between 

the two algorithms is given in Equation (4.6b). 

 
Nested Solution Time - (Phase 1+2 Solution Time)

Relative change (%) = 100%
(Phase 1+2 Solution Time)


 (4.6b) 
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Table 34.   Solution Times for Phase 1 and 2 vs. Nested Decomposition 

Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 
(seconds)

Phase 2 
Solution 
(seconds) 

Phase 1+2 
Solution 
(seconds) 

Regular 
Solution 
(seconds) 

Phase 1+2 
Relative 

Change (%) 
1 1 2.0 5.2 7.2 7.6 5% 
1 2 3.2 5.8 8.9 12.9 44% 
1 3 3.2 8.4 11.6 20.4 76% 
1 4 3.7 11.3 15.0 52.7 251% 
1 5 6.0 18.6 24.5 76.4 212% 
1 6 4.4 26.9 31.3 105.7 238% 
1 7 6.1 37.7 43.8 143.2 227% 
2 1 3.0 3.0 6.0 11.2 87% 
2 2 4.2 14.3 18.5 20.3 10% 
2 3 4.4 26.2 30.6 28.8 -6% 
2 4 12.0 14.6 26.5 121.9 360% 
2 5 10.7 59.9 70.6 121.1 72% 
2 6 6.2 51.3 57.5 170.4 197% 
2 7 16.1 70.2 86.2 224.8 161% 
3 1 4.0 3.3 7.3 11.9 63% 
3 2 5.5 14.3 19.8 29.4 48% 
3 3 8.1 7.2 15.3 34.4 124% 
3 4 14.9 27.9 42.8 121.7 184% 
3 5 13.4 95.6 109.0 251.3 131% 
3 6 11.9 52.1 64.0 199.2 211% 
3 7 40.1 348.0 388.1 467.0 20% 
4 1 5.0 3.7 8.7 13.7 58% 
4 2 10.1 25.3 35.4 35.2 -1% 
4 3 6.7 6.3 13.0 54.2 316% 
4 4 15.1 11.3 26.5 104.0 293% 
4 5 28.0 435.0 462.9 390.9 -16% 
4 6 33.1 79.2 112.3 626.3 458% 
4 7 75.7 1151.1 1226.8 742.4 -39% 
5 1 6.1 4.3 10.4 16.6 60% 
5 2 10.0 17.7 27.7 38.5 39% 
5 3 15.0 11.8 26.9 77.3 188% 
5 4 15.0 64.6 79.6 147.3 85% 
5 5 35.7 189.5 225.1 437.7 94% 
5 6 63.5 189.1 252.6 496.9 97% 
5 7 125.5 2522.2 2647.7 9845.6 272% 
6 1 7.1 4.3 11.4 20.3 78% 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 
(seconds)

Phase 2 
Solution 
(seconds) 

Phase 1+2 
Solution 
(seconds) 

Regular 
Solution 
(seconds) 

Phase 1+2 
Relative 

Change (%) 
6 2 12.4 9.9 22.3 57.5 158% 
6 3 14.9 16.2 31.2 62.3 100% 
6 4 31.3 20.9 52.2 140.3 169% 
6 5 38.7 339.5 378.2 490.3 30% 
6 6 139.8 337.8 477.6 990.1 107% 
6 7 90.9 24836.9 24927.8 19843.5 -20% 
7 1 8.2 4.5 12.7 21.2 67% 
7 2 8.7 15.4 24.1 56.1 133% 
7 3 14.3 12.8 27.0 75.6 180% 
7 4 83.8 49.4 133.2 342.3 157% 
7 5 67.9 207.5 275.4 836.1 204% 
7 6 162.3 648.6 810.9 2257.0 178% 
7 7 1138.0 1979.2 3117.2 10396.7 234% 

 

Table 34 reveals that in almost all budget scenarios, the phase 1 speed and phase 2 

optimality algorithms are faster than regular nested decomposition. There are only 5 out 

of 49 budget scenarios where the phase 1 and 2 algorithms perform slower than nested 

decomposition. In these few scenarios, the phase 1 and 2 algorithm is just slightly slower 

than regular nested decomposition, with a result of 39% slower in the worst case.  

Recall that the objective of this chapter was to obtain an alternative solution 

methodology to regular nested decomposition of DAD CSP for large defense and attack 

budget scenarios that take a long time to obtain an optimal solution. The phase 1 speed 

and phase 2 optimality algorithms can be more than four times faster than regular nested 

decomposition! We frequently observe over 100% improvement in solution time. 

The results of Table 34 have been plotted in Figure 51 for an easy visual 

comparison of the relative performance improvements of the phase 1 speed and phase 2 

optimality algorithms in comparison to regular nested decomposition. The general 

contour of the three dimensional plot in Figure 51 appears to be rising as the defense and 

attack budgets increase. Figure 51 reinforces the notion that the phase 1 and 2 algorithms 

perform better than regular nested decomposition when the problem instance becomes 

more difficult to solve because of increasing defense and attack budgets. 
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Figure 51.  Relative Comparison of Solution Speed on 50 Node Test Network 

A shortcoming of measuring time is the computing notion of wall clock time. 

Wall clock time is a combination of CPU time, input/output time and communication 

time in a computer. Wall clock time may be affected by other processes in the computer 

or by network issues. The use of wall clock time is the only way to measure the 

performance of nested decomposition in GAMS software. GAMS refers to each mixed 

integer program that it solves as a model. GAMS can measure the total wall clock time 

when it loads, builds, and solves a model. The ability to only measure CPU time in the 

GAMS software is limited to the actual solution time of a model (McCarl, 2015). Our 

DAD CSP algorithm implementation in GAMS code uses up to seven different models to 

solve a single CSP DAD problem instance in nested loops. In the phase 1 speed 
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algorithm, there are two models that work back and forth in a while loop. The AD dual 

ILP problem is a model and the DAD master is a model, both of which are called 

multiple times to establish a heuristic defense and lower bound. In the phase 2 optimality 

algorithm of the CSP DAD problem, there are five different models that work together to 

prove the optimal solution. The AD sub problem is a model, the AD sub problem with 

SEC is a model, the AD master is a model, the AD master with SEC is a model and the 

DAD master is a model. All of these five models in the phase 2 optimality algorithm are 

called multiple times in nested while loops in order to find the optimal solution to one 

DAD CSP problem instance. Thus, models are built many times and solvers are called 

over and over to for each problem instance. 

An alternative way to measure the solution speed between the algorithms is to 

look at the number of iterations that it takes to find a solution. This view is advantageous 

because it is independent of the type of computer that is performing the computations. 

The phase 1 speed algorithm only has one iteration of the Lagrange variable dual ILP and 

the DAD outer master problem with Lagrangian relaxation for outer decomposition. The 

AD inner decomposition is eliminated by the use of the Lagrange variable dual ILP. This 

change is at the heart of why the phase 1 speed algorithm is able to provide an 

improvement in the amount of effort required to find a solution to a DAD CSP problem 

instance. The Phase 2 optimality algorithm, which is just regular nested decomposition 

has inner decomposition iterations for each outer decomposition iteration. Table 35 

shows the difference in outer decomposition iterations between the phase 1 speed and 

phase 2 optimality algorithms vs. regular nested decomposition. Recall that regular 

decomposition refers to solving the DAD CSP problem instance with system of 

Equations (4.3). Problem instance scenarios with a defense or attack budget of zero units 

are not displayed. Equation (4.6c) is how the relative difference in the number of total 

iterations between the two approaches is computed. 

 
Regular Iterations - (Phase 1+2 Iterations)

Iteration Relative Difference (%) = 100%
(Phase 1+2 Iterations)


(4.6c) 
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Table 35.   Iteration Comparison of Phase 1 and 2 vs. Nested Decomposition 

Defense 
Budget 

Attack 
Budget 

Phase 1 
“Speed” 
Iteration

Phase 2 
Outer 

Iteration

Phase 2 
Inner 

Iteration

Phase 
1+2 

Total 
Iterations

Regular 
Outer 

Iteration 

Regular 
Inner 

Iteration

Regular 
Total 

Iterations

Iteration 
Relative 

Difference

1 1 2 2 9 13 2 10 12 -8% 
1 2 3 1 10 14 2 18 20 43% 
1 3 3 1 15 19 2 28 30 58% 
1 4 3 1 21 25 3 71 74 196% 
1 5 4 1 35 40 3 104 107 168% 
1 6 3 1 51 55 3 139 142 158% 
1 7 3 1 65 69 3 175 178 158% 
2 1 3 1 4 8 3 14 17 113% 
2 2 4 3 25 32 3 27 30 -6% 
2 3 4 4 50 58 3 40 43 -26% 
2 4 9 1 22 32 7 164 171 434% 
2 5 6 4 118 128 5 164 169 32% 
2 6 3 2 98 103 5 224 229 122% 
2 7 4 2 109 115 5 270 275 139% 
3 1 4 1 4 9 4 18 22 144% 
3 2 5 3 23 31 5 44 49 58% 
3 3 7 1 12 20 4 52 56 180% 
3 4 11 2 37 50 9 180 189 278% 
3 5 8 4 117 129 12 352 364 182% 
3 6 5 2 89 96 7 297 304 217% 
3 7 9 6 326 341 11 579 590 73% 
4 1 5 1 4 10 5 21 26 160% 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
“Speed” 
Iteration

Phase 2 
Outer 

Iteration

Phase 2 
Inner 

Iteration

Phase 
1+2 

Total 
Iterations

Regular 
Outer 

Iteration 

Regular 
Inner 

Iteration

Regular 
Total 

Iterations

Iteration 
Relative 

Difference

4 2 9 5 38 52 6 52 58 12% 
4 3 6 1 9 16 7 78 85 431% 
4 4 11 1 13 25 8 151 159 536% 
4 5 15 4 106 125 15 403 418 234% 
4 6 12 2 70 84 16 641 657 682% 
4 7 18 7 357 382 17 918 935 145% 
5 1 6 1 4 11 6 24 30 173% 
5 2 9 4 25 38 7 55 62 63% 
5 3 12 2 16 30 11 106 117 290% 
5 4 11 4 58 73 11 192 203 178% 
5 5 17 4 84 105 17 405 422 302% 
5 6 21 3 90 114 16 552 568 398% 
5 7 24 3 155 182 25 1118 1143 528% 
6 1 7 1 4 12 7 27 34 183% 
6 2 11 2 11 24 11 78 89 271% 
6 3 12 3 20 35 8 88 96 174% 
6 4 18 1 9 28 10 167 177 532% 
6 5 18 6 102 126 15 302 317 152% 
6 6 29 3 76 108 21 623 644 496% 
6 7 20 19 737 776 30 1249 1279 65% 
7 1 8 1 3 12 8 29 37 208% 
7 2 8 4 17 29 12 68 80 176% 
7 3 11 2 13 26 12 99 111 327% 
7 4 26 1 9 36 18 233 251 597% 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
“Speed” 
Iteration

Phase 2 
Outer 

Iteration

Phase 2 
Inner 

Iteration

Phase 
1+2 

Total 
Iterations

Regular 
Outer 

Iteration 

Regular 
Inner 

Iteration

Regular 
Total 

Iterations

Iteration 
Relative 

Difference

7 5 22 2 24 48 24 409 433 802% 
7 6 29 2 43 74 26 678 704 851% 
7 7 33 4 103 140 28 978 1006 619% 
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Table 35 shows how the use of phase 1 and 2 algorithms can outperform regular 

decomposition to solve DAD CSP problem instances. In all but three scenarios shown in 

Table 35, the Phase 1 and 2 combined algorithm has fewer decomposition iterations than 

the regular approach. In order to see the effect of the phase 1 speed algorithm, consider 

the comparison between phase 2 iterations and regular iterations. Recall that the phase 2 

optimality algorithm is essentially regular nested decomposition, except that the outputs 

of the phase 1 speed algorithm are used as intelligent inputs to begin the phase 2 

algorithm. One of the most impressive examples is the scenario of defense budget seven, 

attack budget six. In that scenario, 29 iterations of the phase 1 speed algorithm are 

performed to obtain a reasonable, but not provably optimal defense. The real 

improvement can be seen in comparison of phase 2 vs. the regular decomposition. The 

phase 2 algorithm only requires two outer iterations, but the regular approach requires 26 

outer iterations. This effect is further amplified in inner decomposition, since phase 2 

requires 43 inner iterations, but the regular approach requires 678 inner iterations. The 

absolute difference in the number of iterations between the phase 1 and 2 combined 

algorithm is 630 fewer iterations than the regular decomposition! Relatively speaking, the 

phase 1 and 2 combined algorithm requires eight times fewer iterations than the regular 

approach! Table 35 shows almost every other budget scenario has a similar, albeit less 

dramatic improvement in the reduction of the number of iterations needed to obtain the 

optimal solution to a problem instance scenario. The relative difference in iteration 

computation is quite remarkable, especially when one considers that a heuristic approach 

is responsible for the reduction in iterations. 

The results of Table 35 have been plotted in Figure 52 for an easy visual 

comparison of the relative number of iterations performed between the combinations of 

the phase 1 speed and phase 2 optimality algorithms vs. regular nested decomposition. 

Figure 52 shows the phase 1 speed and phase 2 optimality algorithms require fewer 

iterations as the defense and attack budgets increase.  
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Figure 52.  Relative Comparison of Iterations on 50 Node Test Network 

I. APPLICATION OF DAD CSP TO A REAL WORLD NETWORK 

1. Definition of Real World Network 

We apply our DAD CSP solution procedures to a real world network. The real 

world network that we choose is the Maryland (MD), Virginia (VA) and Washington, DC 

(DC) transportation network that was used by Carlyle and Wood (2005). We obtained the 

data from these authors via personal communication. The network has 3,670 nodes and 

9,876 directional arcs. This network includes interstate highways, federal highways and 

state routes, all of which we call roads. City streets and county thoroughfares are not 

included in the network. Nodes in this network represent various points along the roads. 

Each road is represented as two arcs between nodes, which allows for bi-directional 
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travel. We have two data items per arc. First, the distance in miles is given for each arc. 

Second, each arc has a speed limit in miles per hour. We convert speed limit and distance 

into a travel time for each arc by dividing distance by the speed limit. In contrast to our 

previous test networks, this real world network has cycles because roads allow for bi-

directional travel. Figure 53 depicts the MD-VA-DC road network, with orange dots 

representing the nodes and blue lines representing the arcs. We choose a start node at the 

Pentagon and a termination node in Appomattox, VA, which are depicted with red stars. 

 

Figure 53.  MD-VA-DC Road Network. Adapted from Carlyle and Wood (2005). 

The start point of the problem instance is the highway adjacent to the Pentagon in 

Arlington, VA, and the termination point is a highway intersection in Appomattox, VA. 

Since many nodes and arcs are in the vicinity of Washington, DC, it is difficult to see the 

proximity of the starting node location. Figure 54 is a zoomed in view of the road 

network map for the Washington, DC, area. The start node can be seen in Figure 54 as a 

red star that is slightly southwest of the city center. 
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Figure 54.  Road Network DC area. Adapted from Carlyle and Wood (2005). 

The choice of start and termination nodes for our DAD CSP problem instance on 

a real-world network must be done with care. We define a well-posed DAD CSP problem 

instance to have a shortest distance path that is significantly different than the shortest 

time path. Similarly, we define an ill-posed DAD CSP problem instance to have a 

shortest distance path and a shortest time path that share most of the same arc segments. 

We observe that when attempting to constrain time when minimizing distance is the 

objective, it is possible to have an infeasible problem instance if the shortest time path is 

eliminated by enforcing a time budget. In the worst case, when the shortest distance path 

is also the quickest path, introducing a time budget of less than the quickest path may 

eliminate all potential paths from consideration. In less extreme situations of poorly 

chosen start and termination pairs, selecting a time budget to constrain the problem 

instance could result in a very small number of feasible paths, or paths with many 
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common arcs. Poorly chosen start and termination nodes could make the optimization of 

defenses and attacks in a DAD CSP problem instance uninteresting. 

Our choice of route optimization from the Pentagon to Appomattox, VA is an 

example of a well-posed DAD CSP problem instance because the shortest distance path 

and the shortest time path do not have many common route segments. Our network data 

shows the shortest distance path is 170.58 miles long, which takes 3.65 hours. Figure 55 

shows the shortest distance path with a solid pink line. The shortest time path is 3.332 

hours, which takes 191.93 miles. The shortest time path is shown with a dashed brown 

line. The shortest distance and shortest time path route information is summarized in 

Table 36. We also include a Google Maps (2016) view of the area to orient our network 

maps with the real world in Figure 56. Note that the distances and times in our network 

data are different than those determined by Google Maps. 

 

Figure 55.  Shortest Distance and Time Paths from the Pentagon to Appomattox 
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Table 36.   Shortest Distance and Time Paths from the Pentagon to Appomattox 

Pentagon to 
Appomattox Path 

Distance 
(miles) 

Time 
(hours) 

 Description of Roads on Path 

Shortest Distance 170.58 3.65 Washington Parkway to I-66 to US-15 
to US-29 to VA-605 

Shortest Time 191.93 3.332 I-395 to I-95 to VA-76/288 to US-360 
to VA-307 to US-460 

 

 

Figure 56.  Map from the Pentagon to Appomattox. Source: Google Maps (2016). 
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2. DAD CSP Example Scenario on Real-World Network 

An example DAD CSP problem scenario is to minimize the distance traveled 

from the Pentagon to Appomattox, VA, within a time budget of 3.6 hours, a defense 

budget of seven units and an attack budget of one unit. Notice that the time budget of 3.6 

hours eliminates the unconstrained shortest path of 170.58 miles in 3.65 hours. A penalty 

(q) of 25 miles exists for traversing an attacked arc in the shortest path. 

The results of the example scenario are shown in Figure 57. Our phase 1 speed 

heuristic gives an initial shortest distance path result of 180.99 miles. Recall the phase 1 

result is not guaranteed to be optimal. The phase 1 algorithm gives a heuristic defense 

that also turns out to be the optimal defense in the phase 2 optimality algorithm. The 

white line segments represent defended arcs. The red line segment represents the one 

attacked arc, since the attack budget was only one unit. The phase 2 optimality algorithm 

is able to find the optimal solution for this particular instance, and it gives a result of 

180.6 miles. The green line represents the shortest distance path. The blue line segments 

represent other arcs in the network, and the orange dots represent other network nodes. 
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Figure 57.  Example Problem for Optimal Defense and Attack of Road Network 

Interpretation of the results of the example DAD problem instance can be inferred 

from Figure 57. The phase 1 speed algorithm identified a shortest distance path of 180.99 

miles within the time budget of 3.60 hours. The defender chose to defend as much of the 

constrained shortest path as possible with the defense budget of seven units. By looking 

at the white line segments of defended arcs on Figure 57, one can visualize how that 

segment of the route would extend to form a 180.99 mile path. Next, the attacker desired 

to maximize the length of that constrained shortest path by attacking an arc segment that 

exists on that path. The attack action can be seen with the red line segment that is 

adjacent to the defended white line segments. Finally, the operator has to choose the 

constrained shortest path after the defenses and attacks occurred. Since a penalty (q) of 

25 miles would be incurred for traveling on the shortest path found in the Phase 1 

problem, the operator decides to choose the next shortest path in the network. 
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3. Algorithm Performance Comparison on Real-World Network 

We test the scalability of both regular nested decomposition of DAD CSP as well 

as our phase 1 and phase 2 algorithms to large networks. We compare the performance 

capability with regular nested decomposition to gauge the effectiveness of our algorithm 

on a large network. We find that regular nested decomposition gets bogged down on the 

large size of the network when trying to resolve the final percentage points of an 

optimality gap. The phase 2 optimality algorithm struggles to converge on the optimal 

solution for problem scenarios when the attack budget is greater than one unit. 

a. Optimality Tolerances Required for Large Test Network 

The large size of the real world network forces us to accept the fact that a perfect 

optimal solution cannot be achieved in a reasonable amount of time when the defense and 

attack budgets are greater than two units. We observe that the majority of the time used 

by the IBM CPLEX solver is spent when the relative optimality gap between the best 

known solution and optimal solution is roughly 10% or less. In order to obtain a final 

solution to most problem instances in a reasonable amount of time, we accept that our 

solutions will not completely converge on the optimal objective function value. 

Termination prior to convergence on the optimal solution means that our approaches to 

solving DAD CSP for large-scale networks are approximation algorithms. 

We set a relative optimality tolerance (RELTOL) for each of our mathematical 

models that are solved in nested decomposition according to some decision rules. Both 

the inner and outer decomposition loops have optimality tolerances that depend upon the 

solution quality of the models that are solved within them. We must choose all of the 

RELTOL values for each model with care. Failure to do so could result in a situation 

where a large RELTOL in one model makes it highly unlikely to ever satisfy a small 

RELTOL in its controlling decomposition loop. We set RELTOL values for each of the 

models of the DAD CSP real-world decomposition according to the following rules: 

 

Relative optimality Tolerance (RELTOL) Equations: 

Overall DAD CSP RELTOL = Outer Decomposition RELTOL (4.7a) 



 199

Inner Decomposition RELTOL ≤ Outer Decomposition RELTOL (4.7b) 
 
Lagrange Variable dual ILP RELTOL + DAD Outer Master Lagrangian  
Relaxation RELTOL ≤ Overall DAD CSP RELTOL (4.7c) 
 
AD subproblem RELTOL + AD Master RELTOL ≤  
AD Inner Decomposition RELTOL  (4.7d) 
 
Inner Decomposition RELTOL + DAD Outer Master RELTOL ≤  
Outer Decomposition RELTOL  (4.7e) 
 
AD Subproblem with SEC RELTOL ≤ AD Inner Decomposition RELTOL (4.7f) 
 
AD Master with SEC RELTOL ≤ DAD Outer Decomposition RELTOL (4.7g) 
 
Lagrange Variable dual ILP RELTOL = DAD Outer Master  
Lagrangian Relaxation RELTOL  (4.7h) 
 
AD Inner Subproblem RELTOL = AD Inner Master RELTOL (4.7i) 
 
AD Inner Decomposition RELTOL = DAD Outer Master RELTOL (4.7j) 
 

The overall RELTOL of a DAD CSP problem instance is limited by the value we 

set for the outer decomposition RELTOL, as shown in Equation (4.7a). Equation (4.7b) 

ensures that the inner decomposition RELTOL must be at least as strict as the outer 

decomposition. Otherwise, the outer decomposition may fail to converge. Equation (4.7c) 

describes the RELTOL requirements for the Phase 1 speed algorithm heuristic solution. 

We use the Lagrange variable dual ILP problem along the DAD master with Lagrangian 

Relaxation as a heuristic guess of the final problem solution, so the sum of their RELTOL 

should be at least as strict as our outer decomposition RELTOL. We observe that the 

tighter the value of RELTOL for the Lagrange Variable dual ILP problem may lead to 

better heuristic values that are closer to the optimal solution. Equation (4.7d) describes 

the RELTOL requirements of the inner decomposition. The inner decomposition consists 

of the AD inner sub problem and AD inner master problem. Both of these mathematical 

models must have RELTOL values that are smaller than the RELTOL for the inner 

decomposition, otherwise the inner decomposition itself may not converge. Equation 

(4.7e) describes the RELTOL requirements for the outer decomposition. The outer 

decomposition is comprised of the solution to the inner decomposition and the DAD 
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outer master problem. The outer decomposition RELTOL must be greater than the sum of 

the RELTOL from the inner decomposition and the DAD master problem, otherwise the 

outer decomposition may not converge. Equations (4.7f) and (4.7g) govern the RELTOL 

for activation of the SEC to prevent repeated paths or attacks, respectively. The bounds 

created by the problems with SEC are not valid for convergence of the original problem, 

so the RELTOL for these models can be less strict. We choose the RELTOL for the SEC 

models to be at least as strict as the decomposition RELTOL which activated the 

respective SEC in Equations (4.7f) and (4.7g), but this choice is arbitrary. Equation (4.7h) 

ensures both the sub problem and master problem of the Phase 1 speed heuristic both 

have the same RELTOL. Equations (4.7i) and (4.7j) ensure that the sub problem and 

master problem of both the inner and outer decompositions have the same RELTOL. 

For our computation of DAD CSP problem instances on the real-world network, 

we set the RELTOL values as shown in Table 37. Since the largest RELTOL for any part 

of the DAD CSP problem is the outer decomposition RELTOL of 10%, the overall DAD 

CSP problem instance RELTOL is 10%. We note that relative tolerances are not strictly 

additive. Actual RELTOL limits are slightly larger than the values we choose. All test 

scenarios do not reveal any convergence issues with the RELTOL values shown in Table 

37. From the example problem instance that was solved in the previous section, the 

optimal path took 180.6 miles and a 10% RELTOL equates to roughly 18 miles of travel. 

Table 37.   Relative Optimality Tolerances for DAD CSP 

Algorithms DAD CSP Problem Stage RELTOL 
value 

All Overall DAD CSP Problem Instance 10 % 
All DAD Outer Decomposition 10 % 

Phase 1 “speed” Lagrange Variable Dual ILP Problem 5 % 
Phase 1 “speed” DAD Outer Master with Lagrangian Relaxation 5 % 

Regular & Phase 2 DAD Outer Master Problem 5 % 
Regular & Phase 2 AD Inner Decomposition 5 % 
Regular & Phase 2 AD Master Problem 2.5 % 
Regular & Phase 2 AD Subproblem 2.5 % 
Regular & Phase 2 AD Master Problem with SEC 10 % 
Regular & Phase 2 AD Subproblem with SEC 5 % 
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b. Performance Comparison 

In order to make our combined algorithm as fast as possible, we must choose the 

number of phase 1 attacks to send to the phase 2 outer master problem. Since this real 

world network is very large, it is possible that sending too many attack cuts from phase 1 

to phase 2 may bog down the outer master problem. We initially observe that using all 

available attacks from phase 1 as input cuts to phase 2 results in slower solution times for 

many budget scenarios. Instead, we choose to send only the two most recent phase 1 

attacks to the phase 2 outer master problem. This choice allows us to take advantage of 

some of the feasible attacks in the phase 1 algorithm, and disregard the less helpful 

attacks that were generated in phase 1. We limit the number of attack cuts sent to phase 2 

in order to help limit the amount of iteration dependent path variables (Y) in the outer 

master problem. The tables in this section reflect the use of two attack cuts shared 

between the phase 1 and phase 2 algorithms. Additionally, the best defense (W*) and its 

associated attack are shared from phase 1 to start the decomposition in phase 2. 

Table 38 shows the relative optimality gap comparison of the Phase 1 speed and 

phase 2 optimality algorithms compared to regular nested decomposition. We guarantee 

that the bounds achieved by our approach will be within 10% of optimality before we 

begin computation because of the RELTOL settings in the previous section. We shade the 

relative optimality gap green when the relative tolerance is less than 5% for a problem 

instance, and shade yellow when the optimality gap is between 5 to 10 %. 
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Table 38.   Real World Network Solution Values and Relative Optimality Gap  

Defense 
Budget 

Attack 
Budget

Phase 1 
Speed 
Bound 

Phase 2 
Upper 
Bound 

Phase 2 
Lower 
Bound 

Phase 2 
Optimality 
Gap (%) 

Regular 
Upper 
Bound 

Regular 
Lower 
Bound 

Regular 
Optimality 
Gap (%) 

1 1 182.38 184.64 182.38 1.24% 184.64 171.18 7.863% 
1 2 187.37 196.80 187.37 5.03% 197.14 181.06 8.881% 
1 3 196.18 199.71 196.18 1.80% 199.71 185.43 7.701% 
1 4 205.99 212.64 206.38 3.03% 210.75 203.29 3.670% 
1 5 212.49 220.69 212.49 3.86% 219.78 205.46 6.970% 
2 1 182.38 184.64 182.38 1.24% 184.64 171.18 7.863% 
2 2 187.37 196.80 187.37 5.03% 196.80 180.24 9.188% 
2 3 194.49 199.71 194.49 2.68% 199.71 184.36 8.326% 
2 4 204.66 210.60 204.66 2.90% 209.64 199.17 5.257% 
2 5 209.37 217.07 209.37 3.68% 217.86 203.64 6.983% 
3 1 182.38 184.64 182.38 1.24% 184.64 171.18 7.863% 
3 2 187.49 196.80 187.49 4.97% 196.80 179.94 9.370% 
3 3 194.51 199.71 194.51 2.67% 199.71 182.95 9.161% 
3 4 200.50 209.64 200.50 4.56% 209.64 199.17 5.257% 
3 5 208.26 217.50 208.26 4.44% 217.15 199.07 9.082% 
4 1 180.99 184.64 180.99 2.02% 184.64 171.18 7.863% 
4 2 186.01 197.14 186.01 5.98% 196.80 181.67 8.328% 
4 3 193.86 199.71 193.86 3.02% 199.71 184.60 8.185% 
4 4 200.50 209.64 200.50 4.56% 209.64 191.13 9.685% 
4 5 209.33 217.88 209.33 4.08% 218.28 198.49 9.970% 
5 1 180.99 184.64 180.99 2.02% 184.64 171.18 7.863% 
5 2 186.01 197.14 186.01 5.98% 196.80 179.96 9.358% 



 203

 
 
 
 
 
 
 

5 3 193.86 199.71 193.86 3.02% 199.71 182.32 9.538% 
5 4 199.07 209.64 199.07 5.31% 209.64 191.13 9.685% 
5 5 208.07 218.58 208.07 5.05% *** *** *** 

*** Indicates problem failed to converge after 86,400 seconds (24 hours) 



 204

We observe an interesting effect from the phase 1 speed heuristic. The heuristic is 

able to find a valid lower bound that is always closer to optimal than the lower bound that 

is obtained from regular nested decomposition. The regular nested decomposition hardly 

ever generates an optimality gap less than 5% because it is not required to do so. Instead, 

the phase 1 heuristic generates only a lower bound, and sends it as an input to the phase 2 

optimality algorithm, which has a 10% relative optimality tolerance requirement. Table 

38 shows that the phase 1 and phase 2 approach always finds a bounds that are tighter 

than the regular nested decomposition approach. But, the phase 1 speed algorithm almost 

always generates a bound that can be proven to be within 5% of the optimal value, even 

though the requirement is a maximum 10% optimality gap. The phase 1 bound is almost 

always the lower bound in the phase 2 optimality algorithm. 

Table 39 compares the time required to obtain a solution within the RELTOL 

parameters for the combination of the phase 1 speed and phase 2 optimality algorithms 

against regular nested decomposition. The computation of relative change percentage 

between the solution times for the two different solution approaches is the same as 

Equation (4.6b). 
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Table 39.   Solution Time Performance Comparison on Real World Network 

Defense 
Budget 

Attack 
Budget 

Phase 1 
Solution 

(Seconds)

Phase 2 
Solution 

(Seconds)

Phase 1+2 
Solution 

(Seconds) 

Regular 
Solution 

(Seconds) 

Phase 1+2 
Relative 

Change (%)
1 1 39.9 42.5 82.4 16.8 -80% 
1 2 22.7 46.2 68.9 55.7 -19% 
1 3 23.5 59.6 83.0 100.7 21% 
1 4 42.1 87.6 129.7 468.3 261% 
1 5 45.4 108.9 154.3 284.1 84% 
2 1 67.8 33.4 101.1 17.9 -82% 
2 2 83.8 51.7 135.5 187.8 39% 
2 3 47.9 56.5 104.4 174.2 67% 
2 4 125.4 95.3 220.8 1,516.3 587% 
2 5 116.1 94.2 210.2 2,457.6 1069% 
3 1 74.8 30.5 105.2 18.1 -83% 
3 2 179.5 36.8 216.3 463.8 114% 
3 3 131.1 67.2 198.3 246.4 24% 
3 4 279.8 86.6 366.4 24,857.9 6684% 
3 5 1,008.0 84.3 1,092.3 8,748.8 701% 
4 1 108.2 32.1 140.4 18.2 -87% 
4 2 135.0 47.6 182.6 1,019.0 458% 
4 3 452.1 61.3 513.5 613.7 20% 
4 4 1,735.7 98.2 1,833.8 15,771.7 760% 
4 5 15,893.5 379.3 16,272.8 64,267.3 295% 
5 1 172.2 46.2 218.3 15.5 -93% 
5 2 300.7 48.0 348.6 502.9 44% 
5 3 802.4 68.0 870.3 1,593.2 83% 
5 4 14,890.1 104.3 14,994.4 30,020.9 100% 
5 5 19,333.9 128.9 19,462.9 *** *** 
*** Indicates problem failed to converge after 86,400 seconds (24 hours) 

 

Table 39 reveals that the phase 1 speed and phase 2 optimality algorithm is 

quicker than regular nested decomposition in 19 of the 25 of the budget scenarios. 

Specifically, the phase 1 and 2 algorithms are always faster than regular nested 

decomposition whenever the attack budget is larger than two units. The amount of 

relative change between the two algorithms is dramatic. We observe whenever there is an 

improvement in solution time, our phase 1 and 2 algorithm is at least 20% faster, and is 

often much more than 100% faster than nested decomposition. The greatest example is 
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the scenario of defense budget of three units and attack budget four units, where our 

phase 1 and 2 algorithm is more than 60 times faster than regular nested decomposition. 

Table 39 shows that regular nested decomposition is the faster approach whenever 

the attack budget is one unit. The slower performance with an attack budget of one unit 

may be attributed to two notions. First, the phase 1 algorithm requires at least two 

iterations in order to reach its stopping criterion of obtaining a repeated defense (W). So, 

the phase 1 algorithm must always spend the time to do at least two algorithms. In the 

case of 1 attack, this may be repetitive. Secondly, the branch and bound search for regular 

nested decomposition appears to be very simple, since it only takes about 15 to 18 

seconds. Using notions about branch and bound of defenses that we developed in Chapter 

II, we believe that the outer decomposition need only defend against the best number of 

attacks that is equal to the defense budget. Further consideration of other attacks would 

not be necessary. Also, consider that regular nested decomposition starts the outer 

decomposition assuming no defenses as opposed to the phase 2 algorithm which starts 

with a heuristic defense from phase 1. In the simple case of only one attack, this usually 

smart starting defense may end up taking more time to pivot to a solution within 

tolerances than starting from the position of no defenses. We did not observe this 

behavior with the medium sized grid test network, but the test on the large network 

exposes this shortcoming of the phase 1 and 2 combined algorithm. 

We notice a common theme for the performance of the phase 1 and 2 combined 

algorithm in Tables 38 and 39. For each budget scenario in Table 39, the bulk of the 

computing time is spent in the phase 1 speed heuristic in order to obtain a good estimate 

of a defense for the network. Then, a short amount of computing time is needed by the 

phase 2 optimality algorithm to prove that the defense found by phase 1 speed heuristic is 

within optimality tolerances. The amount of time to prove optimality in the phase 2 

algorithm is usually one to two minutes, with one instance requiring roughly six minutes. 

We can tell that the defense and attack combination found by the phase 1 heuristic is 

usually optimal by looking at Table 38. The phase 1 bound is almost always the same as 

the lower bound found by phase 2 algorithm. The same value for the phase 1 bound and 
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the phase 2 lower bound means that the heuristic defense and attack found in phase 1 was 

proven to be the optimal defense and attack by the phase 2 algorithm. 

We summarize the results of Table 39 graphically in Figure 58. We represent the 

relative change percentage for the scenario of defense and attack budgets of five units 

each as greater than 10,000%, since the regular nested decomposition problem failed to 

converge within acceptable tolerances after 24 hours of computation time. Figure 58 

shows that our combined phase 1 and 2 approach is almost always significantly faster 

than regular nested decomposition of DAD CSP on the real-world network. 

 

Figure 58.  Solution Time Relative Performance for Road Network 
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There are two significant drawbacks in using solution time to measure the 

performance between the phase 1 and 2 algorithm vs. regular nested decomposition. The 

first shortcoming is the need to use the measurement of computer wall clock time as 

discussed in the previous section. Second, the implementation of our algorithm between 

the python programming language with interaction with the GAMS programming 

language may also result in some inefficiencies. The GAMS programming language has 

some inherent limitations such as the inability to call subroutines and dynamically create 

variable assignments. Because of these restrictions, we chose to implement the phase 1 

and 2 algorithms within Python and use a call GAMS to perform all mathematical 

optimization. Each time our algorithm needs to solve an optimization problem, the 

python script of our algorithm must perform a variety of tasks in order to get an answer. 

For each call to solve an optimization problem, our script needs to write data files for use 

in GAMS, pause python execution, begin an instance of GAMS, read in data files created 

by Python, solve the model in GAMS, write data files for Python interpretation, exit the 

GAMS instance, resume the python script and read in the GAMS data files. This 

extensive use of file input/output by the computer was not noticeable when the models 

were the smaller test networks. But, in the large size real-world network, the sum of all of 

the small delays of switching between programs may be significant. 

Because of the two shortcomings associated with measuring time in obtaining a 

solution, we next present an alternative measure of relative performance between the 

phase 1 and 2 algorithms vs. regular nested decomposition. We use the number of 

iterations performed as a proxy for the amount of effort required to obtain a solution 

within our specified tolerances for DAD CSP on the large-scale network. Table 12 

presents the comparison of iterations performed between the phase 1 and 2 algorithm vs. 

regular nested decomposition. The calculation of the relative difference in the number of 

iterations performed is given by Equation (4.6c) in the previous section. We shade the 

relative iteration difference green when the combined phase 1 and 2 algorithm has a 

positive relative difference, and shade red otherwise. 
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Table 40.   Comparison of DAD CSP Iterations for Real World Network 

Defense 
Budget 

Attack 
Budget 

Phase 1 
Speed 

Iteration

Phase 2 
Outer 

Iteration

Phase 2 
Inner 

Iteration

Phase 
1+2 

Total 
Iterations

Regular 
Outer 

Iteration 

Regular 
Inner 

Iteration

Regular 
Total 

Iterations

Iteration 
Relative 

Difference

1 1 3 1 5 9 1 5 6 -33% 
1 2 2 1 6 9 2 12 14 56% 
1 3 2 1 11 14 2 24 26 86% 
1 4 3 1 16 20 3 53 56 180% 
1 5 3 1 23 27 3 59 62 130% 
2 1 4 1 5 10 1 5 6 -40% 
2 2 4 1 6 11 4 25 29 164% 
2 3 3 1 11 15 3 37 40 167% 
2 4 5 1 21 27 5 108 113 319% 
2 5 5 1 19 25 5 122 127 408% 
3 1 4 1 5 10 1 5 6 -40% 
3 2 6 1 6 13 6 36 42 223% 
3 3 5 1 11 17 3 37 40 135% 
3 4 7 1 13 21 7 152 159 657% 
3 5 11 1 19 31 7 157 164 429% 
4 1 5 1 5 11 1 5 6 -45% 
4 2 5 1 6 12 7 43 50 317% 
4 3 8 1 7 16 4 50 54 238% 
4 4 13 1 25 39 10 202 212 444% 
4 5 25 1 25 51 10 172 182 257% 
5 1 6 1 5 12 1 5 6 -50% 
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Defense 
Budget 

Attack 
Budget 

Phase 1 
Speed 

Iteration

Phase 2 
Outer 

Iteration

Phase 2 
Inner 

Iteration

Phase 
1+2 

Total 
Iterations

Regular 
Outer 

Iteration 

Regular 
Inner 

Iteration

Regular 
Total 

Iterations

Iteration 
Relative 

Difference

5 2 7 1 6 14 6 39 45 221% 
5 3 9 1 11 21 5 59 64 205% 
5 4 25 1 17 43 12 277 289 572% 
5 5 25 1 24 50 *** *** *** *** 

*** Indicates problem failed to converge after 86,400 seconds (24 hours) 
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The results of Table 40 are straightforward to interpret. Whenever the attack 

budget is greater than one unit, the phase 1 and 2 algorithm requires fewer iterations to 

solve DAD CSP than “regular” nested decomposition. The relative improvement in the 

number of iterations performed can be quite dramatic, with most values greater than a 

100% improvement in the number of iterations performed. This measurement is an 

indication that the phase 1 and 2 algorithm requires less computational effort than regular 

nested decomposition whenever the attack budget scenario is greater than one unit. 

Conversely, we also observe that regular nested decomposition requires less 

computational effort only when the attack budget is one unit. 

Figure 16 summarizes the results of Table 40. Again, we represent the relative 

difference percentage for the scenario of defense and attack budgets of five units each as 

greater than 1,000%, since the regular nested decomposition problem failed to converge 

within acceptable tolerances after 24 hours of computation time. Figure 16 shows that our 

Phase 1 and 2 approach requires significantly fewer iterations than regular nested 

decomposition of DAD CSP on the real world road network whenever the attack budget 

is greater than one unit. 
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Figure 59.  Relative Difference of Iterations Performed for Road Network 

4. Lessons Learned from Real-World Network 

We have shown that our approaches to DAD CSP are scalable up to large real 

world problems, albeit with some limitations. Comparison of DAD CSP solution times 

for the large real world network has given us more insight into the performance capability 

of both regular nested decomposition and our combined phase 1 and 2 algorithms. First, 

we learned that large networks take an inordinate amount of time to solve a DAD CSP 

problem instance to perfect optimality. In order to obtain DAD CSP problem instance 

results for a specific budget scenario in less than one day (86,400 seconds) we had to 

change DAD CSP to an approximation algorithm by introducing relative optimality 
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tolerances. We were able to obtain results in less than one day when the overall relative 

optimality tolerance was 10%. We discovered that the combined phase 1 and 2 

algorithms have the potential to reduce the overall approximate solution time for a DAD 

CSP problem scenario, but an improvement in solution time is not guaranteed. We 

observe that our combined phase 1 and 2 algorithms perform the best when the problems 

are more difficult to solve because of large defense and attack budget scenarios. 

J. SUMMARY 

This chapter investigates the DAD CSP problem, which determines the optimal 

defenses, worst-case attacks and the resulting constrained shortest path between start and 

termination nodes in a network. The DAD CSP problem is NP-hard and has never been 

solved before in academic literature. 

Initially, we showed how to apply regular nested decomposition procedures that 

are found in the literature for other DAD problems to solve DAD CSP. We observe that 

regular solution procedures become very slow on medium sized grid networks when the 

defense and attack budgets increase. We believe the slowdown of regular nested 

decomposition can be attributed to the combinatorial explosion of the number of feasible 

solutions as defense and attack budgets increase. The large number of feasible solutions 

experiences combinatorial growth because of the existence of binary defense, attack, and 

path choice variables for every arc in the network. 

We applied the technique of Lagrangian relaxation to improve the speed of 

obtaining a solution to DAD CSP. We devised a novel Lagrange variable problem to 

perform bi-level Lagrangian relaxation in an innovative way. Instead of determining the 

best value of the Lagrange multiplier (μ) iteratively, we treat it as a decision variable to 

be maximized. The Lagrange variable problem can replace inner decomposition in order 

to form the core of what we call a phase 1 speed heuristic to find a reasonably good set of 

defenses and fairly close to optimal objective function value to a DAD CSP problem 

instance with no guarantee of solution quality. When the quickest time to obtain a 

solution to a DAD CSP problem instance is the primary concern, the phase 1 speed 

heuristic is the best choice. 
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Another technique to improve DAD CSP is Lagrangian relaxation combined with 

path enumeration. This approach uses the traditional iterative approach to find the best 

value of a Lagrange multiplier (μ). Since iterative attempts at Lagrangian relaxation may 

not converge, we investigated path enumeration to close the convergence gap. We found 

Lagrangian relaxation and path enumeration to be a slower approach at obtaining a 

heuristic solution. We proposed using multi-cuts to reduce the number of inner 

decomposition iterations. These techniques create what we call the phase 1 bounding 

heuristic. Even though it is a slower approach to obtain a heuristic solution, the bounding 

heuristic does improve the performance of solving DAD CSP problem instances. 

It can take hours to find the optimal defense and objective function value for a 

DAD CSP problem instance when the defense and attack budgets are large. In a few 

minutes, our DAD CSP speed heuristic can produce a useful lower bounds on the optimal 

solution and a defense plan that is fairly close to the optimal solution. When the DAD 

CSP problem instance becomes difficult to solve due to a large defense and attack 

budgets, our combined phase 1 speed and phase 2 optimality algorithms have the 

potential to solve the problem optimally in a fraction of the time required by regular 

nested decomposition. We investigated how the choice of the number of attack cuts to 

pass from the phase 1 algorithm to the phase 2 algorithm can affect the speed of obtaining 

optimal or near optimal solutions. 

Our use of a real-world transportation network proves that our solution 

procedures for DAD CSP can effectively scale to large problem sizes. We observe the 

nested decomposition approach requires an inordinate amount of time to converge on the 

optimal solution for large real world networks. We loosened the relative optimality 

tolerance to 10% in order to have reasonable convergence time. We learned that our 

requirements for an exact algorithm had to be changed to an approximation algorithm in 

order to accommodate the sheer size of the large network. We also reduced the number of 

input attacks from the phase 1 algorithm to the phase 2 algorithm in order to speed up the 

time to obtain a provably near optimal solution as much as possible. We are able to 

approximately solve DAD CSP problem instances on the large real-world network for 

scenarios of up to defense and attack budgets of five units using our combined phase 1 



 215

speed and phase 2 optimality algorithms within a relative optimality tolerance. The 

regular nested decomposition approach performed much slower than our combined phase 

1 and 2 algorithm whenever the attack budget was greater than two units. We observe 

that our combined phase1 and 2 algorithm can perform much faster than regular nested 

decomposition on our real-world test network whenever the attack budget is greater than 

one unit. In the best case, our combined phase1 and 2 algorithm is more than 60 times 

faster than regular nested decomposition. But, we also discovered that phase 1 and 2 

algorithms took more time than nested decomposition when the attack budget is only one 

unit. We observe that the majority of computational time and effort in our combined 

algorithm is required by the phase 1 speed heuristic and only a small amount of time is 

needed by the phase 2 optimality algorithm to confirm that the defense found is optimal 

or near optimal. 
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY OF FINDINGS 

Our dissertation examines the defender-attacker-defender (DAD) tri-level 

optimization model. We supply historical context to the problem of analysis of defenses 

and attacks to systems in an optimization model. We explain how existing literature 

solves a tri-level DAD model through the implementation of nested decomposition 

procedures for the DAD minimum cost flow model. We seek to expand knowledge of 

efficient solution procedures for the tri-level DAD optimization model through exploring 

many interesting areas of the problem and creating new algorithms to improve the ability 

to solve problem instances. Our research investigated implicit enumeration (IE) and 

nested defenses for the DAD minimum cost flow problem, and also presented heuristic 

and optimal solution procedures for the DAD constrained shortest path (CSP) problem. 

We show how to apply known IE procedures to the DAD minimum cost flow 

problem. We expand upon current literature for the building of an enumeration tree for 

the DAD model by determining how to include additions to networks as potential 

defenses. IE is an efficient way to find either all multiple equivalent optimal solutions or 

all solutions within a fixed percentage of the optimal solution. IE allows us to transform a 

complicated tri-level DAD model it into a sequence of abridged bi-level AD models. 

Our IE algorithm for the DAD problem instance initially restricts the defense 

budget to zero units and solves a bi-level AD model to observe worst-case attacks. From 

the root node, an enumeration tree is generated by systematically relaxing this initial 

restriction. The relaxation occurs as an arrangement of defenses against to the worst-case 

attack by an incremental increase of the defense budget. Branches of the tree are formed 

by each defense against the worst-case attack that improves network performance. 

Defenses can either be hardening existing edges to prevent an attack, or adding a new 

edge to the network that would improve flow. Nodes at the end of branches are new 

instances of bi-level AD problems with fixed defenses that are represented by the 

branches of the tree from the root to that node. Our IE algorithm ignores defenses that 
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cannot improve the system based on this attack. Ignoring defenses that do not improve 

the system in light of the worst-case attack function is a pruning rule to keep the size of 

the enumeration tree as small as possible. We develop theory behind our pruning rule for 

adding new edges as defenses in detail. The process of solving fixed defense bi-level AD 

models, observing worst-case attacks and defending against them by incrementally 

increasing the defense budget repeats at each new tree node and continues until the 

defense budget is exhausted. An enumeration tree is created that contains all optimal and 

near optimal solutions to the original DAD minimum cost flow problem instance. 

Our IE algorithm for the DAD problem can provide unique benefits for a decision 

maker. Equivalent optimal solutions are a useful resource for a decision maker that must 

consider factors that are beyond the scope of mathematical modeling when considering 

the best defense choices to make for an existing network. It is possible that a decision 

maker may not be indifferent between two or more mathematically equivalent solutions 

when other real-world considerations are taken into account. It is also possible that a near 

optimal solution that is found efficiently with IE could be attractive to a decision maker 

because of the tradeoff between optimality and other factors which cannot be modeled 

mathematically. Secondly, IE can also provide an alternative method to solve a DAD 

problem instance when a nested decomposition approach may be impractical or 

intractable. IE provides the ability to reduce the complexity of a tri-level optimization 

problem to a series of simpler bi-level optimization problems. In the case of a difficult tri-

level DAD problem, IE offers the analyst an alternative solution algorithm. 

Our research into nested defenses for the DAD minimum cost flow problem 

quantifies the additional cost incurred by requiring a prioritized list of defenses over a 

series of budget scenarios. Nested defenses are a monotonic sequence of sets where each 

set of defenses for a particular budget scenario contains the set of defenses for the smaller 

scenario. This type of circumstance can occur when defense budgets, attack budgets, or 

both are unknown when decisions about system defenses must be made. We show how to 

implement nesting constraints to the DAD minimum cost flow model. Our research 

shows how the collection of objective function values corresponding to a set of nested 
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defenses are almost always worse than the set of optimal objective function values for a 

range of DAD problem instances when budget scenarios are parameterized. 

Our research into nested defenses on the DAD minimum cost flow problem gives 

both heuristic approaches and a parametric programming approach to find a set of nested 

defenses for a range of budget scenarios. Our heuristic approaches involve finding an 

optimal solution to a DAD problem instance for one budget scenario and using that result 

as a starting point to construct defenses for other budget scenarios. Heuristic starting points 

for nested defenses are investigated for minimum, midrange, and maximum budgets. We 

apply vector and matrix norms as well as other decision analysis tools to provide an 

indication of how to compare the performance of different nesting strategies against each 

other and against the set of optimal solutions. But, there is no guarantee that the heuristic 

approach will produce a set of nested defenses that are as close as possible to the set of 

optimal solutions for a range of budget scenarios. We show that it is possible to have a set 

of nested defenses that are suboptimal for every budget scenario, and that set can be closer 

to the set of optimal non-nested solutions than all of our other heuristic nesting strategies. 

We then reformulate the problem to find the closest possible set of nested defenses to the 

set of optimal non-nested solutions in terms of a vector norm. We consider a parametric 

programming approach to determine the best set of nested defenses to a DAD minimum 

cost flow instance. We show that parametric programming finds the closest possible nested 

defense to the set of optimal non-nested defenses based on a vector norm measurement for 

a sequence of uncertain defense and attack budget scenarios. 

Our research into the DAD Constrained Shortest Path (CSP) problem shows how 

tri-level optimization modeling can expand from network flow models into binary 

programming. In this model, arc or edge additions are not allowed. The addition of the 

side constraint takes away the network structure of a traditional shortest path problem, 

and we explain how that change means the DAD CSP model is not a network flow 

problem. We show how to apply traditional nested decomposition to the DAD CSP 

problem and that it is possible to achieve results for some problem instances using this 

approach. However, we demonstrate that nested decomposition procedures gets bogged 
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down in the binary variable branch and bound procedure when the defense and attack 

budgets increase for medium-sized grid networks. 

We introduce Lagrangian relaxation of the side constraint for both the operator 

and defender models of DAD CSP in order to regain the network structure of the 

problem. We investigate two different ways to incorporate the Lagrangian relaxation of 

the side constraint into heuristic procedures to obtain a solution to DAD CSP instances. 

First, we take advantage of the idea that Lagrangian relaxation seeks the greatest lower 

bound on the original problem. We observe that the Lagrangian goal of maximizing a 

lower bound is similar to the attacker problem goal of maximizing a shortest path. We 

combine these ideas into a Lagrange variable problem where we treat the Lagrange 

multiplier as a decision variable to be maximized. We show how regaining the network 

structure allows us to form a dual ILP version of the operator model under these 

circumstances. The Dual-ILP Lagrange variable problem then supplants decomposition 

of the inner AD model in order to find a heuristic defense. This approach is featured in 

what we call the phase 1 speed heuristic algorithm. An advantage of treating the 

Lagrange multiplier as a decision variable is that it is a very fast way to obtain a heuristic 

solution. A disadvantage is that it can only produce a lower bound on the optimal solution 

to an instance. A second method uses Lagrangian relaxation of the operator model 

follows a more traditional iterative approach to obtain the value of the Lagrange 

multiplier. In the iterative approach, the upper and lower bounds of the Lagrangian 

relaxation may not converge, which requires an additional step to find the constrained 

shortest path of the operator model. We use the technique of path enumeration to close 

the gap between Lagrangian bounds that do not converge. The second approach is called 

the phase 1 bounding heuristic algorithm. The advantage of the iterative approach is that 

it can produce valid upper and lower bounds on a DAD CSP instance. A disadvantage is 

that it is slower than the speed algorithm. 

Our two algorithms to obtain heuristic solutions to DAD CSP problem instances 

can also be incorporated into larger algorithms to obtain optimal or near optimal solutions 

more quickly than regular nested decomposition. We can use information obtained in the 

heuristic algorithms as intelligent starting information to begin regular nested 
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decomposition. The use of smart starting points for nested decomposition serves to 

dramatically decrease both the time required to obtain a solution and the number of total 

iterations required within the decomposition procedures. Our most dramatic 

improvements occur when we combine our phase 1 speed algorithm with nested 

decomposition in what we call the phase 2 optimality algorithm. We show how our 

combined algorithm is usually more than 100 percent faster than regular nested 

decomposition in obtaining an optimal solution to DAD CSP instances on a medium-

sized grid test network. However, our combined algorithm was found to be marginally 

slower than nested decomposition in 5 of 49 budget scenarios on the grid network. 

We show that our procedures for solving DAD CSP problem instances can be 

scaled to large real-world problems. We perform an analysis of defending and attacking 

the shortest distance road paths from the Pentagon to Appomattox, VA subject to a time 

budget constraint. We show that DAD CSP instances in real-world networks can be very 

difficult to solve optimally in a reasonable amount of time when attack budgets are 

greater than one unit. In order to obtain solutions to DAD CSP instances in under 24 

hours for our sample problem, we introduce relative tolerances which change our 

procedures to approximation algorithms. We are able to obtain solutions to DAD CSP on 

the road network for instances of defense and attack budgets of five units that are 

guaranteed to be within 10% of optimality in less than 24 hours. Our combined algorithm 

was faster than regular nested decomposition in 19 of 25 budget scenarios. We show our 

combined algorithm can obtain a provably near optimal solution from 20% to 6,000% 

faster than regular nested decomposition on the real world network.  

B. FUTURE RESEARCH TOPICS 

We believe that many advances can be made for defense and attack of systems by 

a more robust study of tri-level models that explicitly consider action of the defender, 

attacker and operation of a system. There are many unexplored avenues for research with 

the DAD tri-level optimization model. 



 222

1. Implicit Enumeration for DAD Constrained Shortest Paths 

One future research area is developing an alternative solution method for DAD 

CSP. We showed how Lagrangian relaxation can be used to solve DAD CSP instances 

more quickly than regular nested decomposition. However, we believe the IE algorithm 

could be applied to DAD CSP as another way to solve the problem. Future research can 

adapt an IE algorithm for the DAD CSP problem as an alternative solution methodology 

to our Lagrangian relaxation method. It would be interesting to see how the solution 

performance of IE would fare against regular nested decomposition for DAD CSP 

problem instances. It might be possible that the bi-level transformation that is performed 

in IE can provide some benefit to solving DAD CSP more efficiently. 

2. Implicit Enumeration Application to Larger or Difficult Problems 

Another future research area for the IE algorithm involves scalability limitations of 

IE to DAD models. We show in Chapter II that IE solutions to the DAD minimum cost 

flow problem can be slower than regular nested decomposition. We know that solutions to 

DAD problem instances can become very time consuming when either the defense budget, 

attack budget or network size become very large. We believe that there may be a tipping 

point where the analyst can have a preference between the IE and nested decomposition 

approaches. Is there a problem size limit when solving a DAD instance with IE is 

impractical? What is the limiting factor in scalability of the IE algorithm, is it network size, 

attack and/or defense budget size, cardinality of the set of network design elements, or 

something else? 

We also know that IE can provide an alternative method to nested decomposition 

for solving a DAD model. DAD models may exist that are very difficult to solve with a 

nested decomposition approach. What are the features of a DAD model that make the 

nested decomposition method perform poorly? Does an IE approach provide a solution 

for DAD models when nested decomposition does not? 
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3. Attack Effects on Side Constraints 

A future research area for the DAD CSP problem is attacker influences on in the 

side constraint. In our exploration of the DAD CSP problem, the attacker is only 

permitted to change the cost of an arc. This type of attack affects optimality and does not 

affect the feasible region. Instead, suppose the attacker could attack the side constraint of 

time. For example, suppose an attacker could damage an arc so that it takes twice as 

much time to travel across it. This type attack profoundly changes the nature of the 

problem because the attacker would be able to make some previously feasible paths 

infeasible. Our current model does not allow for this possibility because our type of 

attack can only make paths more expensive in terms of distance cost. How does this new 

kind of attack behavior affect the problem? We believe the changes needed to the 

problem would be significant. Current nested decomposition methods build both the inner 

and outer master problem by creating optimality cuts of the feasible region. But, this new 

type of attack would also introduce the need for additional feasibility cuts that ensure 

paths containing attacked arcs remain within the feasible region. 

4. Determination of Lagrange Multiplier for Outer Decomposition 

Another future research area for the DAD CSP problem involves the setting of the 

Lagrange multiplier in the outer decomposition. In our research, we fix the value of the 

Lagrange multiplier on the outer decomposition to the value that was found from the 

inner decomposition. We believe this approach is an acceptable way to quickly find a 

value for the Lagrange multiplier. Better ways may exist to solve for the value for the 

Lagrange multiplier in the outer decomposition. Future research could try other methods 

to set the value of the Lagrange multiplier in the outer decomposition. 

5. DAD Modeling for Other Kinds of Systems 

Our research into DAD CSP shows that the DAD model can be applied to more 

than just network flow problems. DAD CSP is an integer linear program that is based on a 

network, but it does not have network structure because of the side constraint. The next 

logical step would be to define and formulate tri-level optimization problems that are not 
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based on networks. Other types of systems that are not networks can be defended against 

attacks, and that type of analysis could be adapted to the tri-level DAD optimization model. 
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APPENDIX. ADDITIONAL ALGORITHM PSEUDO-CODE 

A. RECURSIVE PATH ENUMERATION ALGORITHM 

Recursive Path Enumeration Algorithm Pseudo Code: 
Input: Network with nodes and their successors, start_node, end_node, path_cost, 
path_time, current_path (empty by default), maximum cost allowed, maximum time 
allowed, attacks to network edges are fixed and the cost of these attacks are 
incorporated. 
Output: The shortest path with the shortest cost and associated time. 
Algorithm: 
Maximum cost = Lagrangian Upper bound, 
Maximum time = time budget. 
Current_path = current_path + start node. 
If length of current_path> 1 node: 

Calculate path_time and path_cost with data for arc from previous node to start 
node 
Else:  

Set path time = 0 and path cost=0. 
If start node is the same as end node: 

Return current_path. 
Exit function. 

Initialize an empty list of paths. 
For each current_node that is a successor to the start_node do: 

If the current_node is not in the path:  
If path_time ≤ maximum time & path cost ≤ maximum cost: 

Recursive call to obtain new paths changing these inputs: 
Start_node = current_node. 
Path_time = path_time + arc time from start_node to 

current_node 
Path_cost = path_cost + arc cost from start_node to 

current_node  
For each new path do:  

If path_time ≤ maximum time & path_cost ≤ maximum 
cost: 

Append the new path to the list of paths. 
Sort the list of all time budget feasible paths by their associated costs. 
Exit function. 
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B. AD CSP WITH LAGRANGIAN RELAXATION AND PATH 
ENUMERATION ALGORITHM 

AD CSP with Lagrangian Relaxation & Path Enumeration Algorithm Pseudo-code:  
Inputs: 

Network with nodes, edges, costs, attack budget and time budget 
Maximum iterations for inner AD decomposition (k) & Lagrangian relaxation (L) 
Tolerance for AD inner decomposition (usually tolerance ≤ 1 unit) 

Outputs: 
AD Upper and Lower Bounds, best attack (X*) and multiplier (μ*) 

Algorithm: 
While AD Upper Bound – Lower bound ≥ tolerance and iteration ≤ max iterations: 

For |L| iterations: 
Solve DAD CSP Operator Model with Lagrangian Relaxation 
Obtain Lagrangian Upper and Lower bounds 

If Lagrangian bound do not match:  
Perform Recursive Path Enumeration  
Obtain shortest path (Y) and associated cost 

If Lagrangian bounds match: 
Obtain shortest path (Y) and cost 
Check if shortest path (Y) is repeated from a previous iteration 

If path repeated and AD bounds within tolerance:  
Break while and for loops. 

If path repeated and AD bounds not within tolerance:  
Resolve DAD CSP Operator Model with Lagrangian Relaxation 

with SEC on 
Continue to next iteration 

If shortest path cost ≥ current AD lower bound: 
Update AD lower bound with shortest path cost 
Save current attack (X) as best attack X* 
Save current Lagrange multiplier (μ) as best multiplier μ*  

Solve AD CSP inner master problem 
Obtain attack (X) and associated cost 
If master problem cost ≤ AD upper bound: 

Update AD upper bound 
Increment AD iteration counter 

 

When the inner decomposition upper and lower bounds match, or the iteration 

limit is reached, then the inner decomposition with Lagrangian relaxation is complete. 

The output of the inner decomposition is the best attack (X*) and best Lagrange 

multiplier (μ*). Without matching bounds, the output is the best known attack and 

Lagrange multiplier associated with the final inner decomposition lower bound. 
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